Skip to main content

Advertisement

Log in

Development of nuclear and chloroplast polymorphic microsatellites for Crossostephium chinense (Asteraceae)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Crossostephium chinense is a traditional Chinese medicinal herb and it is often cultivated as an ornamental plant. Previous studies on this species mainly focused on its chemical composition and it was rarely represented in genetic studies, and thus genomic resources remain scarce.

Methods and results

Both chloroplast and nuclear polymorphic microsatellites of C. chinense were screened from genome skimming data of two individuals. 64 and 63 cpSSR markers were identified from two chloroplast genomes of C. chinense. A total of 133 polymorphic nSSRs were developed. Ten nSSRs were randomly selected to test their transferability across 35 individuals from three populations of C. chinense, and 20 individuals each of Artemisia stolonifera and A. argyi. Cross-amplifications were successfully done for C. chinense and were partially amplified for both Artemisia species. The number of alleles varied from two to nine. The observed heterozygosity and expected heterozygosity per locus ranged from 0.000 to 0.286 and from 0.029 to 0.755, respectively.

Conclusions

In this study, we developed polymorphic cpSSRs and nSSRs markers for C. chinense based on genome skimming sequencing. These genomic resources will be valuable for population genetics and conservation studies in C. chinense and Artemisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Makino T (1906) Observations on the Flora of Japan. Shokubutsugaku Zasshi 20:en23–en35

    Article  Google Scholar 

  2. Hobbs CR, Baldwin BG (2013) Asian origin and upslope migration of Hawaiian Artemisia (Compositae-Anthemideae). J Biogeogr 40:442–454

    Article  Google Scholar 

  3. Wu Q, Zou L, Yang XW, Fu DX (2009) Novel sesquiterpene and coumarin constituents from the whole herbs of Crossostephium chinense. J Asian Nat Prod Res 11:85–90

    Article  CAS  PubMed  Google Scholar 

  4. Tang F, Chen F, Chen S, Wang XE, Zhao H (2010) Molecular cytogenetic identification and relationship of the artificial intergeneric hybrid between Dendranthema indica and Crossostephium chinense by GISH. Plant Syst Evol 289:91–99

    Article  Google Scholar 

  5. Yang H, Sun M, Lin S, Guo Y, Yang Y, Zhang T, Zhang J (2017) Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS ONE 12:e0187124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lemmens RHMJ (2016) Crossostephium chinense (PROSEA). Published on the Internet; https://uses.plantnet-project.org/e/index.php?title=Crossostephium_chinense_(PROSEA)&oldid=217938. Accessed 24 June 2021

  7. Zhu S, Yilin C, Yousheng C, Yourun L, Shangwu L, Xuejun G, et al. (2011) Asteraceae (Compositae). Flora of China. In: Wu ZY, Raven PH, Hong DY (eds) 20–21

  8. Ryukyu Plant Research Group (2018 onward) Database of Ryukyu plants. Published on the Internet; https://www.kahaku.go.jp/research/activities/project/hotspot_japan/ryukyus/db/. Accessed 24 June 2021

  9. Pelser PB, Barcelona JF, Nickrent DL (eds.) (2011 onwards). Co's Digital Flora of the Philippines. Published on the Internet; www.philippineplants.org. Accessed on: 24 June 2021.

  10. WFO (2021) Crossostephium chinense (A.Gray ex L.) Makino. Published on the Internet; http://www.worldfloraonline.org/taxon/wfo-0000085439. Accessed 27 Jan 2021

  11. Yang XW, Zou L, Wu Q, Fu DX (2008) Studies on chemical constituents from whole plants of Crossostephium chinense. China J Chin Materia Med 33:905–908 ((In Chinese))

    CAS  Google Scholar 

  12. Uehara A, Kitajima J, Kokubugata G, Iwashina T (2013) Further characterization of foliar flavonoids in Crossostephium chinense and their geographic variation. Nat Prod Commun 9:163–164

    Google Scholar 

  13. Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169

    Article  CAS  Google Scholar 

  14. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49:827–831

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Yue M, Niu C, Ma XF, Li ZH (2017) Comparative analysis of the complete chloroplast genome of four endangered herbals of Notopterygium. Genes 8:E124

    Article  PubMed  CAS  Google Scholar 

  16. Liu LX, Wang YW, He PZ, Li P, Lee J, Soltis DE, Fu CX (2018) Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics 19:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  CAS  PubMed  Google Scholar 

  18. Jones E, Dupal M, Dumsday J, Hughes L, Forster J (2002) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  19. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649

    Article  CAS  Google Scholar 

  20. Kumar S, Dudley J (2007) Bioinformatics software for biologists in the genomics era. Bioinformatics 23:1713–1717

    Article  CAS  PubMed  Google Scholar 

  21. Xia EH, Yao QY, Zhang HB, Jiang JJ, Zhang LP, Gao LZ (2016) CandiSSR: an efficient pipeline used for identifying candidate polymorphic SSRs based on multiple assembled sequences. Front Plant Sci 6:1171

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen TT, Du YX, Zhao HD, Dong MF, Liu LX (2019) The complete chloroplast genome of Crossostephium chinense (Asteraceae), using genome skimming data. Mitochondrial DNA B 4:322–323

    Article  Google Scholar 

  23. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  24. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  25. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  26. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  27. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  28. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  29. Wang W, Chen S, Zhang X (2018) Whole-genome comparison reveals divergent IR borders and mutation hotspots in chloroplast of herbaceous bamboos (Bambusoideae: Olyreae). Molecules 23:1537

    Article  PubMed Central  CAS  Google Scholar 

  30. Li J, Ye G, Liu H, Wang Z (2020) Complete chloroplast genomes of three important species, Abelmoschus moschatus, A. manihot and A. sagittifolius: genome structures, mutational hotspots, comparative and phylogenetic analysis in Malvaceae. PLoS ONE 15:42591

    Google Scholar 

  31. Iram S, Hayat MQ, Tahir M, Gul A, Ahmed I (2019) Chloroplast genome sequence of Artemisia scoparia: comparative analyses and screening of mutational hotspots. Plants 8:476

    Article  CAS  PubMed Central  Google Scholar 

  32. Shahzadi I, Mehmood F, Ali Z, Ahmed I, Mirza B (2020) Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics 112:1454–1463

    Article  CAS  PubMed  Google Scholar 

  33. Kim GB, Lim CE, Kim JS, Kim K, Lee JH, Yu HJ, Mun JH (2020) Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications. BMC Genomics 21:1–17

    Article  Google Scholar 

  34. Cho MS, Kim SH, Yang J, Crawford DJ, Stuessy TF, López-Sepúlveda P, Kim SC (2020) Plastid phylogenomics of Dendroseris (Cichorieae; Asteraceae): Insights into structural organization and molecular evolution of an endemic lineage from the Juan Fernández Islands. Front Plant Sci 11:594272

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen J, Zhang X, Landis JB, Zhang H, Deng T, Sun H, Wang H (2020) Plastome evolution in Dolomiaea (Asteraceae, Cardueae) using phylogenomic and comparative analyses. Front Plant Sci 11:376

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jean Claude S, Park S (2020) Aster spathulifolius Maxim. a leaf transcriptome provides an overall functional characterization, discovery of SSR marker and phylogeny analysis. PLoS ONE 15:4132

    Article  CAS  Google Scholar 

  37. Geng QF, Liu J, Sun L, Liu H, Ou-Yang Y, Cai Y, Tang XS, Zhang HW, Wang ZS, An SQ (2015) Development and characterization of polymorphic microsatellite markers (SSRs) for an endemic plant, Pseudolarix amabilis (Nelson) Rehd. (Pinaceae). Molecules 20:2685–2692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xu J, Hou FY, Wan DR, Wang S, Xu DM, Yang GZ (2015) Development and characterization of polymorphic microsatellite markers for Sedum sarmentosum (Crassulaceae) and their cross-species transferability. Molecules 20:19929–19935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrés-Sánchez S, Temsch EM, Rico E, Martínez-Ortega MM (2013) Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications. Plant Syst Evol 299:331–345

    Article  Google Scholar 

  40. Siniscalchi CM, Loeuille B, De Siqueira Filho JA, Pirani JR (2019) Chresta artemisiifolia (Vernonieae, Asteraceae), a new endangered species from a recently created protected area in the Brazilian Caatinga. Phytotaxa 399:119–126

    Article  Google Scholar 

  41. Sakata Y, Kaneko S, Hayano A, Inoue-Murayama M, Ohgushi T, Isagi Y (2013) Isolation and characterization of microsatellite loci in the invasive herb Solidago altissima (Asteraceae). Appl Plant Sci 1:1200313

    Article  Google Scholar 

  42. López-Caamal A, Reyes-Chilpa R, Tovar-Sánchez E (2018) Hybridization between Tithonia tubaeformis and T. rotundifolia (Asteraceae) evidenced by nSSR and secondary metabolites. Plant Syst Evol 304:313–326

    Article  CAS  Google Scholar 

  43. Liao R, Luo Y, Yisilam G, Lu R, Wang Y, Li P (2019) Development and characterization of SSR markers for Sanguinaria canadensis based on genome skimming. Appl Plant Sci 7:e11289

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kosiński P, Sękiewicz K, Walas Ł, Boratyński A, Dering M (2019) Spatial genetic structure of the endemic alpine plant Salix serpillifolia: genetic swamping on nunataks due to secondary colonization? Alpine Bot 129:107–121

    Article  Google Scholar 

  45. Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX (2016) Evolution of East Asia’s Arcto-tertiary relict Euptelea (Eupteleaceae) shaped by late Neogene vicariance and quaternary climate change. BMC Evol Biol 16:1–17

    Article  CAS  Google Scholar 

  46. Zhang CY, Low S, Song YG, Kozlowski G, Van Do T, Li L, Zhou SS, Tan YH, Cao GL, Zhou Z, Meng HH, Li J (2020) Shining a light on species delimitation in the tree genus Engelhardia Leschenault ex Blume (Juglandaceae). Mol Phylogenet Evol 152:106918

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31900188, 31970225), Natural Science Foundation of Zhejiang Province (Grant No. LY19C030007). The material was supported by National Wild Plant Germplasm Resource Center for Shanghai Chenshan Botanical Garden (Grant No. ZWGX1902).

Author information

Authors and Affiliations

Authors

Contributions

PL designed the study. PL, SS, YF and BJG collected the samples. LXL conducted the laboratory experiments. LXL, SLL, and KK conducted bioinformatic and statistical analyses. All authors drafted and revised the manuscript.

Corresponding authors

Correspondence to Kamil Konowalik or Pan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table S1

Locality and voucher information for populations of Crossostephium chinense, Artemisia stolonifera, and A. argyi in this study. Supplementary file1 (DOCX 15 kb)

Table S2

The detail information of polymorphic nSSRs identified for Crossostephium chinense and Primer pairs designed for each polymorphic nSSRs. Supplementary file2 (XLSX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Low, S.L., Sakaguchi, S. et al. Development of nuclear and chloroplast polymorphic microsatellites for Crossostephium chinense (Asteraceae). Mol Biol Rep 48, 6259–6267 (2021). https://doi.org/10.1007/s11033-021-06590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06590-9

Keywords

Navigation