Skip to main content
Log in

Impaired transcription of human endogenous retroviruses in the sperm with exception of syncytin 1: short communication

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Human endogenous retroviruses (HERVs), remnants of ancestral infections, represent 8% of the human genome. HERVs are co-opted for important physiological functions during embryogenesis; however, little is known about their expression in human gametes. We evaluated the transcriptional levels of several retroviral sequences in human spermatozoa.

Methods and results

We assessed, through a Real-Time PCR assay, the transcription levels of the pol genes of HERV-H, -K and -W families and of env genes of syncytin (Syn)1 and Syn2 in the spermatozoa from 8 normospermic subjects. The entity and distribution of their expressions were compared to values found in white blood cells (WBCs) from 16 healthy volunteers. The level of HERV transcripts was significantly lower in spermatozoa than in WBCs for HERV-H-pol, HERV-K-pol, HERV-W-pol, and Syn2.In contrast, the level of expression of Syn1 in the sperm was similar to that found in WBCs and it was significantly higher than the mRNA concentrations of other HERV genes in spermatozoa.

Conclusions

Our findings show, for the first time, the presence of several retroviral mRNAs in the sperm, although in low amounts. The higher concentration of Syn1 suggests that it could play a key role in the fusion process between gametes during fertilization and, perhaps, be involved in embryo development. Further studies could clarify whether aberrant HERV expressions, in particular of Syn1, negatively affect fertilization and embryo growth and whether sperm manipulation procedures, such as cryopreservation, may potentially influence HERV transcription in the human male gamete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Johnson WE (2019) Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol 17:355–370. https://doi.org/10.1038/s41579-019-0189-2

    Article  CAS  PubMed  Google Scholar 

  2. Isbel L, Whitelaw E (2012) Endogenous retroviruses in mammals: an emerging picture of how ERVs modify expression of adjacent genes. BioEssays 34:734–738. https://doi.org/10.1002/bies.201200056

    Article  CAS  PubMed  Google Scholar 

  3. Blikstad V, Benachenhou F, Sperber GO, Blomberg J (2008) Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol Life Sci 65:3348–3365. https://doi.org/10.1007/s00018-008-8495-2

    Article  CAS  PubMed  Google Scholar 

  4. Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, ReijoPera RA, Wysocka J (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522(7555):221–225. https://doi.org/10.1038/nature14308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bergallo M, Galliano I, Pirra A, Daprà V, Licciardi F, Montanari P, Coscia A, Bertino E, Tovo PA (2019) Transcriptional activity of human endogenous retroviruses is higher at birth in inversed correlation with gestational age. Infect Genet Evol 68:273–279. https://doi.org/10.1016/j.meegid.2018

    Article  CAS  PubMed  Google Scholar 

  6. Bergallo M, Marozio L, Botta G, Tancredi A, Daprà V, Galliano I, Montanari P, Coscia A, Benedetto C, Tovo PA (2020) Human endogenous retroviruses are preferentially expressed in mononuclear cells from cord blood than from maternal blood and in the fetal part of placenta. Front Pediatr 8:244. https://doi.org/10.3389/fped.2020.00244

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671. https://doi.org/10.1016/j.placenta.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Blaise S, de Parseval N, Benit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100:13013–13018. https://doi.org/10.1073/pnas.2132646100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J (2017) Zona pellucida mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod 23:292–303. https://doi.org/10.1093/molehr/gax008

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson BO, Jin M, Andersson AC, Sundström P (1999) Expression of envelope proteins of endogeneous C-type retrovirus on the surface of mouse and human oocytes at fertilization. Virus Genes 18:115–120. https://doi.org/10.1023/a:1008004332513

    Article  CAS  PubMed  Google Scholar 

  11. Hanke K, Chudak C, Kurth R, Bannert N (2013) The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer 132:556–567. https://doi.org/10.1002/ijc.27693

    Article  CAS  PubMed  Google Scholar 

  12. Prudhomme S, Bonnaud B, Mallet F (2005) Endogenous retroviruses and animal reproduction. Cytogenet Genome Res 110:353–364. https://doi.org/10.1159/000084967

    Article  CAS  PubMed  Google Scholar 

  13. Bjerregaard B, Lemmen JG, Petersen MR, Østrup E, Iversen LH, Almstrup K, Larsson L-I, Ziebe S (2014) Syncytin-1 and its receptor is present in human gametes. J Assist Reprod Genet 31:533–539. https://doi.org/10.1007/s10815-014-0224-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. WHO laboratory manual for the examination and processing of human semen, 5th edn, 2010

  15. Tovo PA, Rabbone I, Tinti D, Galliano I, Trada M, Daprà V, Cerutti F, Bergallo M (2020) Enhanced expression of human endogenous retroviruses in new-onset type 1 diabetes: potential pathogenetic and therapeutic implications. Autoimmunity 53:283–288. https://doi.org/10.1080/08916934.2020.177728

    Article  CAS  PubMed  Google Scholar 

  16. Tovo PA, Garazzino S, Daprà V, Alliaudi C, Silvestro E, Calvi C, Montanari P, Galliano I, Bergallo M (2020) Chronic HCV infection is associated with overexpression of human endogenous retroviruses that persists after drug-induced viral clearance. Int J Mol Sci. 21:3980. https://doi.org/10.3390/ijms21113980

    Article  CAS  PubMed Central  Google Scholar 

  17. Crowell RC, Kiessling AA (2007) Endogenous retrovirus expression in testis and epididymis. Biochem Soc Trans 35(3):629–633. https://doi.org/10.1042/BST0350629

    Article  CAS  PubMed  Google Scholar 

  18. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42. https://doi.org/10.1016/j.tig.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  19. Castillo J, Jodar M, Oliva R (2018) The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 24:535–555. https://doi.org/10.1093/humupd/dmy017

    Article  CAS  PubMed  Google Scholar 

  20. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828. https://doi.org/10.1101/gad.234294.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332(6163):459. https://doi.org/10.1038/332459a0

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Leng L, Liu C, Lu C, Yuan Y, Wu L, Gong F, Zhang S, Wei X, Wang M et al (2019) An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun 10:364. https://doi.org/10.1038/s41467-018-08244-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, Richaud A, Ducos B, Heidmann T (2007) Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci USA 104:205–2053. https://doi.org/10.1073/pnas.0707873105

    Article  Google Scholar 

  24. McSwiggin HM, O’Doherty AM (2018) Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction 156:R9–R21. https://doi.org/10.1530/REP-18-0009

    Article  CAS  PubMed  Google Scholar 

  25. Mani S, Mainigi M (2018) Embryo culture conditions and the epigenome. Semin Reprod Med 36:211–220. https://doi.org/10.1055/s-0038-1675777

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Institutional grant (ex60%) number RiLo_Berm 2018 and by MIUR in the PhD (for S.C.) of the University of Turin, Italy.

Author information

Authors and Affiliations

Authors

Contributions

PT and AR conceived the study; MS enrolled the patients; SC was responsible for collection, analysis, and storage of sperm samples; VD, PM, and IG. performed laboratory experiments. MB, SC, and PT contributed in writing and editing the manuscript; GG, CB and AR contributed in the final interpretation of data and editing the manuscript. All authors gave their final approval.

Corresponding author

Correspondence to Stefano Canosa.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergallo, M., Canosa, S., Galliano, I. et al. Impaired transcription of human endogenous retroviruses in the sperm with exception of syncytin 1: short communication. Mol Biol Rep 48, 5803–5808 (2021). https://doi.org/10.1007/s11033-021-06577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06577-6

Keywords

Navigation