Skip to main content
Log in

CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

WRKY transcription factor is involved in regulation of plant growth and development, response to biotic and abiotic stresses, including homologous WRKY3 and WRKY4 genes which play a vital role in regulating plants defense response to pathogen and drought stress.

Methods and results

To investigate the function of AtWRKY3 and AtWRKY4 genes in regulating salt and Me-JA stresses, the loss-of-function mutations were generated by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system in Arabidopsis thaliana. Several independent transgenic lines with single or double mutations were obtained via Agrobacterium-mediated transformation. The knockout lines of AtWRKY3 and AtWRKY4 genes were successfully achieved and confirmed by qRT-PCR technology. Expression analysis showed that AtWRKY3 and AtWRKY4 genes had significantly up-regulated under salt and Me-JA stresses. The growth of double mutant plants under salt or Me-JA stresses were significantly inhibited compared with corresponding wild type (WT) plants, especially their root lengths. Moreover, the double mutant plants displayed salt and Me-JA sensitivity phenotypic characteristics, such as the increased relative electrolyte leakage (REL) and a substantial reduce in the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities.

Conclusion

Taken together, these data suggested that the simultaneous modification of homologous gene copies of WRKY are established using CRISPR/Cas9 system in A. thaliana and the loss of AtWRKY3 and AtWRKY4 has an effect on ROS scavenging pathways to reduce stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeat

Cas9:

CRISPR-associated 9

WT:

Wide type

SOD:

Superoxide dismutase

POD:

Peroxidase

CAT:

Catalas

REL:

Relative electrolyte leakage

TFs:

Transcription factors

AP2:

APETALA2

ERF:

Ethylene-responsive factor

NAM:

No apical meristem

ATAF1/2:

Arabidopsis thaliana transcription activation factor

CUC2:

Cup-shaped cotyledon

DBD:

DNA binding domains

SPF1:

SWEET POTATO FACTOR1

SA:

Salicylic acid

JA:

Jasmonic acid

ABA:

Abscisic acid

ROS:

Reactive oxygen species

sgRNA:

Single guide RNA

PAM:

Protospacer adjacent motif

DSB:

Double-strand breaks

Clo-0:

Columbia-0

qRT-PCR:

Quantitative real-time PCR

MS:

Murashige and Skoog

PAM:

Protospacer adjacent motif

ZFNs:

Zinc finger nucleases

TALENs:

Transcription activator-like effector nucleases

MLO:

MILDEW-RESISTANCE LOCUS

References

  1. Jiang Y, Zeng B, Zhao H, Zhang M, Xie S, Lai J (2012) Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. J Integr Plant Biol 54(9):616–630

    Article  CAS  PubMed  Google Scholar 

  2. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    Article  CAS  PubMed  Google Scholar 

  3. Hussain A, Li X, Weng Y, Liu Z, Ashraf MF, Noman A, Yang S, Ifnan M, Qiu S, Yang Y, Guan D, He S (2018) CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. Int J Mol Sci 19(5):1426

    Article  PubMed Central  Google Scholar 

  4. Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244(6):563–571

    Article  CAS  PubMed  Google Scholar 

  5. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59(2):86–101

    Article  CAS  PubMed  Google Scholar 

  6. Wen F, Zhu H, Li P, Jiang M, Mao W, Ong C, Chu Z (2014) Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon. DNA Res 21(3):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110(21):E1963–E1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239(2):255–266

    Article  CAS  PubMed  Google Scholar 

  9. Niu C, Jiang M, Li N, Cao JG, Hou MF, Ni DA, Chu ZQ (2019) Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. Peer J 7(1):e6495

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20(5):492–499

    Article  CAS  PubMed  Google Scholar 

  11. Ullah A, Sun H, Hakim YX, Zhang X (2018) A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant 162(4):439–454

    Article  CAS  PubMed  Google Scholar 

  12. Tang Y, Kuang JF, Wang FY, Chen L, Hong KQ, Xiao YY, Xie H, Lu WJ, Chen JY (2013) Molecular characterization of PR and WRKY genes during SA- and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biol Technol 79:62–68

    Article  CAS  Google Scholar 

  13. Li GZ, Wang ZQ, Yokosho K, Ding B, Fan W, Gong QQ, Li GX, Wu YR, Yang JL, Ma JF, Zheng SJ (2018) Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol 219(1):149–162

    Article  CAS  PubMed  Google Scholar 

  14. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    Article  CAS  PubMed  Google Scholar 

  15. Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20(7):1984–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiranmai K, Rao GL, Pandurangaiah M, Nareshkumar A, Reddy VA, Lokesh U, Venkatesh B, Johnson AMA, Sudhakar C (2018) A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci 9(1):346

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lai Z, Vinod K, Zheng Z, Fan B, Chen Z (2008) Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8:68

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  22. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaves-Sanjuan A, Sanchez-Barrena MJ, Gonzalez-Rubio JM, Moreno M, Ragel P, Jimenez M, Pardo JM, Martinez-Ripoll M, Quintero FJ, Albert A (2014) Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci USA 111(42):E4532–E4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang M, Zhao CL, Zhao MF, Li YZ, Wen GS (2020) Phylogeny and evolution of calcineurin B-like (CBL) gene family in grass and functional analyses of rice CBLs. J Plant Biol 63(2):117–130

    Article  CAS  Google Scholar 

  25. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19(5):1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  28. Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155(1):464–476

    Article  CAS  PubMed  Google Scholar 

  29. Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152(4):1940–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17(6):349–359

    Article  PubMed  Google Scholar 

  31. Radhika V, Kost C, Boland W, Heil M (2010) Towards elucidating the differential regulation of floral and extrafloral nectar secretion. Plant Signal Behav 5(7):924–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q (2015) High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8(12):1820–1823

    Article  CAS  PubMed  Google Scholar 

  33. Lamesch P, Berardini TZ, Li DH, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(D1):D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    Article  CAS  PubMed  Google Scholar 

  35. Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110(1):42–51

    Article  CAS  Google Scholar 

  36. Li JB, Luan YS, Liu Z (2015) SpWRKY1 mediates resistance to Phytophthora infestans and tolerance to salt and drought stress by modulating reactive oxygen species homeostasis and expression of defense-related genes in tomato. Plant Cell Tissue Organ Cult 123(1):67–81

    Article  CAS  Google Scholar 

  37. Whittle CA, Krochko JE (2009) Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. Plant Cell 21(8):2203–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Ma X, Xie X, Liu YG (2017) CRISPR/Cas9-based genome editing in plants. Prog Mol Biol Transl Sci 149:133–150

    Article  PubMed  Google Scholar 

  39. Mao YF, Botella JR, Liu YG, Zhu JK (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6(3):421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164(4):2020–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26(1):230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grunewald W, De Smet I, Lewis DR, Lofke C, Jansen L, Goeminne G, Vanden Bossche R, Karimi M, De Rybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu MC, Gheysen G, Muday GK, Friml J, Beeckman T (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA 109(5):1554–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107(51):22338–22343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14(6):1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 29(11):2854–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang Y, Feng CZ, Ye Q, Wu WH, Chen YF (2016) Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. Plos Genet 12(2):e1005833

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zheng L, Liu G, Meng X, Liu Y, Ji X, Li Y, Nie X, Wang Y (2013) A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol 82(4–5):303–320

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z, Feng R, Zhang X, Su Z, Wei J, Liu J (2019) Characterization of the Hippophae rhamnoides WRKY gene family and functional analysis of the role of the HrWRKY21 gene in resistance to abiotic stresses. Genome 62(10):689–703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Qi Xie (Institute of Genetics and Developmental Biology, VAS) for providing us with the vector pYAO:hSpCas9-target-sgRNA.

Funding

This research was supported by the Shanghai Sailing Program (19YF1414800). The funding body had no role in study design, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MJ conceived, designed and funded the research. MJ, PL and XL performed the experiments, analyzed the data and wrote the manuscript. MJ revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 The primer list of all genes used in this study (DOCX 15 kb)

11033_2021_6541_MOESM2_ESM.tif

Supplementary file2 CRISPR/Cas9-mediated the mutations of AtWRKY3 and AtWRKY4 genes in T1 generation of different transgenic plant lines. (A-B) Identification of PCR products digested with restriction enzyme NdeI by gel electrophoresis. NdeI, PCR products digested with NdeI. The length of PCR products of NdeI digested are marked by red arrow heads. The number on the lanes represents the different transgenic plant lines. e Sign “N” represents the no enzyme digestion, while other lanes represents enzyme digestion. M, DNA marker. (C-D) Comparisons and analyses of the sequencing results. The gRNA sequence is labeled with light yellow and the PAM sequence is marked with a box. (E-F) Detailed mutation information of the AtWRKY3 and AtWRKY4 transgenic line (T1), respectively. DNA fragments around the target sequences were amplified by PCR and then subjected to sequencing analysis. The PAM and the sgRNA target sequences are indicated by blue and red lines, respectively. Green arrows indicated the insertion of an alanine (A) nucleotide. The blue arrow indicated the position of a deleted A or threonine (T) nucleotide (TIF 1808 kb)

11033_2021_6541_MOESM3_ESM.jpg

Supplementary file3 CRISPR/Cas9-mediated the single mutations of AtWRKY3 (A) or AtWRKY4 (B) gene in T2 generation of different transgenic plant lines. The number plus pound sign represents the different transgenic plant lines (JPG 130 kb)

11033_2021_6541_MOESM4_ESM.tif

Supplementary file4 Relative expression levels of AtWRKY3 and AtWRKY4 in mutants by qRT-PCR. The asterisk indicates the fold changes of expression levels is less 0.5  than WT plants (TIF 3041 kb)

11033_2021_6541_MOESM5_ESM.jpg

Supplementary file5 Physiological indies measurement under salt stress. (A) Phenotypes of wrky3 plants under salt stress. (B) Root lengths. (C) SOD activity. (D) POD activity. (E) CAT activity. (F) REL contents. Control represents a normal growth condition. The number plus pound sign represents the different transgenic plant lines. WT, wild type; 24#, wrky3-24; 25#, wrky3-25; 28#, wrky3-28; 23#, wrky4-23; 32#, wrky4-32; 35#, wrky4-35; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; REL, relative electrolyte leakage. Mean and S.D. values were obtained from three independent experiments (JPG 127 kb)

11033_2021_6541_MOESM6_ESM.jpg

Supplementary file6 Physiological indies measurement under Me-JA stress. (A) Phenotypes of wrky4 plants under Me-JA stress. (B) Root lengths. (C) SOD activity. (D) POD activity. (E) CAT activity. (F) REL contents. Control represents a normal growth condition. The number plus pound sign represents the different transgenic plant lines. WT, wild type; 24#, wrky3-24; 25#, wrky3-25; 28#, wrky3-28; 23#, wrky4-23; 32#, wrky4-32; 35#, wrky4-35; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; REL, relative electrolyte leakage. Mean and S.D. values were obtained from three independent experiments (JPG 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, X. & Jiang, M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Mol Biol Rep 48, 5821–5832 (2021). https://doi.org/10.1007/s11033-021-06541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06541-4

Keywords

Navigation