Skip to main content

Advertisement

Log in

Inflammatory, antioxidant and glycemic status to different mode of high-intensity training in type 2 diabetes mellitus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Exercise has traditionally been used and prescribed as an effective and suitable way to treat type 2 diabetics Mellitus (T2DM). In this regard, we compared inflammatory, antioxidant, and glycemic status to different kinds of high-intensity interval training (strength training, HIIT, and HIIT + ST) in patients with T2DM.

Methods and results

Fifty-nine T2DM patients (age = 45–60 yrs) were randomly divided to strength training (ST) (n = 15), high intensity interval training (HIIT) (n = 16), HIIT + ST (n = 15) or served as control (CON) (n = 13) groups. Experimental groups performed three training sessions/week for 12 weeks. Inflammatory, antioxidant, glycemic factors, and anthropometric parameters were evaluated at baseline and after the 12 weeks of interventions.

Training HIIT groups significantly improved antioxidant factors, lipid profile, and glycemic parameters (P ≤ 0.05). Interleukin 6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) significantly decreased in the three training groups. As a result of training, the overall inflammatory and antioxidant status were improved considerably in all three training groups compared to the CON group (P ≤ 0.05). In addition, there were significant differences in CRP at the follow-up values between ST and CON groups (P ≤ 0.05). Exercise time and TC were significantly improved in HIIT than in the CON group (P ≤ 0.05). The results showed a significant difference between the HIIT + ST group and the CON group in VO2peak (P ≤ 0.05).

Conclusions

Our results showed improvement in inflammatory factors, antioxidants, and glycemic parameters in all training groups regardless of their type. However, for more benefits in T2DM patients, combination exercises can be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  2. Sabouri M, Norouzi J, Zarei Y, Sangani MH, Hooshmand Moghadam B (2020) Comparing high-intensity interval training (hiit) and continuous training on apelin, APJ, NO, and cardiotrophin-1 in cardiac tissue of diabetic rats. J Diabetes Res. https://doi.org/10.1155/2020/1472514

    Article  PubMed  PubMed Central  Google Scholar 

  3. AlAmri OD, Albeltagy RS, Akabawy AM, Mahgoub S, Abdel-Mohsen DM, Moneim AEA et al (2020) investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J Funct Foods. 71:103996

    Article  CAS  Google Scholar 

  4. Whiting PH, Kalansooriya A, Holbrook I, Haddad F, Jennings PE (2008) The relationship between chronic glycaemic control and oxidative stress in type 2 diabetes mellitus. Br J Biomed Sci 65(2):71–74

    Article  CAS  PubMed  Google Scholar 

  5. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823

    Article  CAS  PubMed  Google Scholar 

  6. Teixeira de Lemos E, Oliveira J, Páscoa Pinheiro J, Reis F (2012) Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxid Med Cell Longev. https://doi.org/10.1155/2012/741545

    Article  PubMed Central  Google Scholar 

  7. Golbidi S, Badran M, Laher I (2011) Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. https://doi.org/10.1155/2012/941868

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO III, Criqui M et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  9. Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet 368(9548):1673–1679

    Article  Google Scholar 

  10. Jorge MLMP, de Oliveira VN, Resende NM, Paraiso LF, Calixto A, Diniz ALD et al (2011) The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism 60(9):1244–52

    Article  CAS  PubMed  Google Scholar 

  11. Mitranun W, Deerochanawong C, Tanaka H, Suksom D (2014) Continuous vs interval training on glycemic control and macro-and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports 24(2):e69–e76

    Article  CAS  PubMed  Google Scholar 

  12. Grace A, Chan E, Giallauria F, Graham PL, Smart NA (2017) Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 16(1):1–10

    Article  Google Scholar 

  13. Teixeira-Lemos E, Nunes S, Teixeira F, Reis F (2011) Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol 10(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahmadi N, Eshaghian S, Huizenga R, Sosnin K, Ebrahimi R, Siegel R (2011) Effects of intense exercise and moderate caloric restriction on cardiovascular risk factors and inflammation. Am J Med 124(10):978–982

    Article  PubMed  Google Scholar 

  15. Støa EM, Meling S, Nyhus L-K, Strømstad G, Mangerud KM, Helgerud J et al (2017) High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. Eur J Appl Physiol 117(3):455–467

    Article  PubMed  CAS  Google Scholar 

  16. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK et al (2013) The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 36(2):228–236

    Article  PubMed  PubMed Central  Google Scholar 

  17. Francois ME, Baldi JC, Manning PJ, Lucas SJ, Hawley JA, Williams MJ et al (2014) ‘Exercise snacks’ before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia 57(7):1437–1445

    Article  CAS  PubMed  Google Scholar 

  18. Farinha JB, Ramis TR, Vieira AF, Macedo RC, Rodrigues-Krause J, Boeno FP et al (2018) Glycemic, inflammatory and oxidative stress responses to different high-intensity training protocols in type 1 diabetes: a randomized clinical trial. J Diabetes Complicat 32(12):1124–1132

    Article  Google Scholar 

  19. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, Boulay P et al (2012) Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 35(4):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Draper H, Squires E, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radical Biol Med 15(4):353–363

    Article  CAS  Google Scholar 

  21. Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR (1995) Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc. https://doi.org/10.1249/00005768-199505000-00007

    Article  PubMed  Google Scholar 

  22. Hansen D, Dendale P, Jonkers R, Beelen M, Manders R, Corluy L et al (2009) Continuous low-to moderate-intensity exercise training is as effective as moderate-to high-intensity exercise training at lowering blood HbA 1c in obese type 2 diabetes patients. Diabetologia 52(9):1789–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghardashi-Afousi A, Davoodi M, Keshtkar-Hesamabadi B, Asvadi-Fard M, Bigi MAB, Izadi MR et al (2020) Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J Diabetes Complicat. 34(1):107469

    Article  Google Scholar 

  24. Reusch JE, Bridenstine M, Regensteiner JG (2013) Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord 14(1):77–86

    Article  PubMed  PubMed Central  Google Scholar 

  25. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801

    Article  PubMed  Google Scholar 

  26. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Haram PM, Tjonna AE et al (2007) Superior cardiovascular effect of aerobic interval-training versus moderate continuous training in elderly heart failure patients: 651 May 31 8: 15 AM-8: 30 AM. Med Sci Sports Exerc 39(5):S32

    Article  Google Scholar 

  27. Wormgoor SG, Dalleck LC, Zinn C, Harris NK (2017) Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes 41(5):536–547

    Article  PubMed  Google Scholar 

  28. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R et al (2016) High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia 59(1):56–66

    Article  CAS  PubMed  Google Scholar 

  29. Seibaek M, Vestergaard H, Burchardt H, Sloth C, Torp-Pedersen C, Nielsen SL et al (2003) Insulin resistance and maximal oxygen uptake. Clin Cardiol 26(11):515–520

    Article  PubMed  Google Scholar 

  30. Mannucci E, Bonifazi A, Monami M (2021) Comparison between different types of exercise training in patients with type 2 diabetes mellitus: A systematic review and network metanalysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2021.02.030

    Article  PubMed  PubMed Central  Google Scholar 

  31. Group UPDS (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The lancet 352(9131):837–853

    Article  Google Scholar 

  32. Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, Trombetta M et al (2012) Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 35(4):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G et al (2005) The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil 86(8):1527–1533

    Article  PubMed  Google Scholar 

  34. Karstoft K, Winding K, Knudsen SH, James NG, Scheel MM, Olesen J et al (2014) Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia 57(10):2081–2093

    Article  PubMed  Google Scholar 

  35. Alvarez C, Ramirez-Campillo R, Martinez-Salazar C, Mancilla R, Flores-Opazo M, Cano-Montoya J et al (2016) Low-volume high-intensity interval training as a therapy for type 2 diabetes. Int J Sports Med 37(09):723–729

    Article  CAS  PubMed  Google Scholar 

  36. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP (2018) The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab 20(5):1131–1139

    Article  CAS  PubMed  Google Scholar 

  37. Dela F, Ingersen A, Andersen NB, Nielsen MB, Petersen HH, Hansen CN et al (2019) Effects of one-legged high-intensity interval training on insulin-mediated skeletal muscle glucose homeostasis in patients with type 2 diabetes. Acta Physiologica 226(2):e13245

    Article  PubMed  CAS  Google Scholar 

  38. Magalhães JP, Júdice PB, Ribeiro R, Andrade R, Raposo J, Dores H et al (2019) Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: A one-year randomized controlled trial. Diabetes Obes Metab 21(3):550–559

    Article  PubMed  CAS  Google Scholar 

  39. Magalhães JP, Santos DA, Correia IR, Hetherington-Rauth M, Ribeiro R, Raposo JF et al (2020) Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year. Randomized Controlled Trial. https://doi.org/10.1186/s12933-020-01136-y

    Article  Google Scholar 

  40. Amri J, Parastesh M, Sadegh M, Latifi S, Alaee M (2019) High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of irisin and betatrophin. Physiol Int 106(3):213–224

    Article  CAS  PubMed  Google Scholar 

  41. Gordon LA, Morrison EY, McGrowder DA, Young R, Fraser YTP, Zamora EM et al (2008) effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BMC Complement Altern Med 8(1):1–10

    Article  CAS  Google Scholar 

  42. Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J et al (2002) High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 25(10):1729–1736

    Article  PubMed  Google Scholar 

  43. Zadeh MAM, Kargarfard M, Marandi SM, Habibi A (2018) Diets along with interval training regimes improves inflammatory & anti-inflammatory condition in obesity with type 2 diabetes subjects. J Diabetes Metab Disord 17(2):253–267

    Article  CAS  Google Scholar 

  44. Hopps E, Canino B, Caimi G (2011) Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol 48(3):183–189

    Article  CAS  PubMed  Google Scholar 

  45. Gerosa-Neto J, Antunes BM, Campos EZ, Rodrigues J, Ferrari GD, Neto JCR et al (2016) Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil 12(6):575

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leggate M, Carter WG, Evans MJ, Vennard RA, Sribala-Sundaram S, Nimmo MA (2012) Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol 112(8):1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mallard AR, Hollekim-Strand SM, Coombes JS, Ingul CB (2017) Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus. J Sci Med Sport 20(10):893–898

    Article  PubMed  Google Scholar 

  48. Devries MC, Hamadeh MJ, Glover AW, Raha S, Samjoo IA, Tarnopolsky MA (2008) Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radical Biol Med 45(4):503–511

    Article  CAS  Google Scholar 

  49. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    Article  CAS  PubMed  Google Scholar 

  50. Pesta D, Roden M (2017) The Janus head of oxidative stress in metabolic diseases and during physical exercise. Curr DiabRep 17(6):41

    Google Scholar 

  51. Oliveira VNd, Bessa A, Jorge MLMP, Oliveira RJdS, de Mello MT, De Agostini GG et al (2012) The effect of different training programs on antioxidant status, oxidative stress, and metabolic control in type 2 diabetes. Appl Physiol Nutr Metab 37(2):334–44

    Article  PubMed  CAS  Google Scholar 

  52. de Moraes R, Van Bavel D, de Brito GM, Tibiriçá E (2016) Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study. BMC Cardiovasc Disord 16(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. De Sousa RAL (2018) Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals. Int J Diabetes Dev Ctries 38(2):138–145

    Article  Google Scholar 

Download references

Funding

Any institutes did not fund this study.

Author information

Authors and Affiliations

Authors

Contributions

MS, EH, FS designed the study. PP, MS, and EH collected the data. MS and FS revised the final version of the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Mostafa Sabouri or Fatemeh Shabkhiz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were by the ethical standards of the ethical committee of Tehran University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Patients signed informed consent regarding publishing their data and photographs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabouri, M., Hatami, E., Pournemati, P. et al. Inflammatory, antioxidant and glycemic status to different mode of high-intensity training in type 2 diabetes mellitus. Mol Biol Rep 48, 5291–5304 (2021). https://doi.org/10.1007/s11033-021-06539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06539-y

Keywords

Navigation