Skip to main content

Advertisement

Log in

Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Dysfunction of the gastrointestinal tract (GIT) is one of the most common non-motor symptom of Parkinson’s Disease (PD). Pathological processes causing PD were suggested to initiate in the enteric nervous system (ENS) and proceed to the central nervous system (CNS). There are studies showing that low-carbohydrate ketogenic diets can improve motor symptoms of PD. Caprylic acid (C8) is the principal fatty acid component of the medium-chain triglycerides in the ketogenic diets. In this study, we aimed to evaluate the effects of caprylic acid, in neurotoxin exposed zebrafish focusing on the relationship between intestinal and brain oxidative stress and inflammation.

Methods

Adult zebrafish were exposed to rotenone (5 μg/L) (R group) and caprylic acid (20 and 60 mg/mL) (L + HDCA and R + HDCA groups) for 30 days. At the end of 30 days locomotor activities were determined. Levels of lipid peroxidation (LPO), nitric oxide, glutathione and superoxide dismutase and glutathione S-transferase activities were determined by spectrophotometric methods and gene expressions of tnf⍺, il1, il6, il21, ifnɣ and bdnf were evaluated by RT-PCR in the brain and intestinal tissues of zebrafish.

Results

Caprylic acid ameliorated LPO, NO, SOD and the expressions of tnf⍺, il1, il6, il21, ifnɣ and bdnf in brain and intestines. Locomotor activities were only ameliorated in high dose R + HDCA group.

Conclusions

Caprylic acid ameliorated the neurotoxin-induced oxidative stress and inflammation both in the brain and intestines and enhanced locomotor activity in zebrafish.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The materials used during the present study are available from the corresponding author on reasonable request.

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  2. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  3. Harsanyiova J, Buday T, Kralova Trancikova A (2020) Parkinson’s disease and the gut: Future perspectives for early diagnosis. Front Neurosci 14:626

    Article  PubMed  PubMed Central  Google Scholar 

  4. Metta V, Leta V, Mrudula KR, Prashanth LK, Goyal V, Borgohain R, Chung-Faye G, Chaudhuri KR (2021) Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol. https://doi.org/10.1007/s00415-021-10567-w

    Article  PubMed  Google Scholar 

  5. Chen QQ, Haikal C, Li W, Li JY (2019) Gut inflammation in association with pathogenesis of Parkinson’s disease. Front Mol Neurosci 12:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. González H, Contreras F, Pacheco R (2015) Regulation of the neurodegenerative process associated to parkinson’s disease by CD4+ T-cells. J Neuroimmune Pharmacol 10(4):561–575

    Article  PubMed  Google Scholar 

  7. Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH (2017) A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 26:1560–1571

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aeja J, Forsyth C.B., Shaikh M, Voigt RM, Engen PA (2019) Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Frontiers in Neurology 10: 1245.

  9. Sethi K (2008) Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 23(Suppl 3):S521–S533

    Article  PubMed  Google Scholar 

  10. Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP (2018) Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov Disord 33(8):1306–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ (2003) Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr 77:128–132

    Article  CAS  PubMed  Google Scholar 

  12. Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ (2012) Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging 33:425.e19-425.e27

    Article  CAS  Google Scholar 

  13. Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB (2005) Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64:728–730

    Article  CAS  PubMed  Google Scholar 

  14. Zhao W, Varghese M, Vempat P, Dzhun A, Cheng A, Wang J et al (2012) Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS ONE 7(11):e49191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bach AC, Babayan VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36(5):950–962

    Article  CAS  PubMed  Google Scholar 

  16. Ünal İ, Emekli-Alturfan E (2019) Fishing for Parkinson’s Disease: A review of the literature. J Clin Neurosci 62:1–6

    Article  PubMed  Google Scholar 

  17. Tanner CM, Kamel F, Ross GW et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH (2010) Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 19;5(1):e8762.

  19. Greene JG, Noorian AR, Srinivasan S (2009) Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218(1):154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Louhimies S (2002) Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Lab Anim. https://doi.org/10.1177/026119290203002S36

    Article  PubMed  Google Scholar 

  21. Collymore C, Rasmussen S, Tolwani RJ (2013) Gavaging adult zebrafish J Vis Exp 11(78):50691

    Google Scholar 

  22. Ünal İ, Çalışkan-Ak E, Üstündağ ÜV, Ateş PS, Alturfan AA, Altinoz MA, Elmaci I, Emekli-Alturfan E (2020) Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish. Int J Neurosci 130(6):574–582

    Article  PubMed  CAS  Google Scholar 

  23. Yurtsever İ, Üstündağ ÜV, Ünal İ, Ateş PS, Emekli-Alturfan E (2020) Rifampicin decreases neuroinflammation to maintain mitochondrial function and calcium homeostasis in rotenone-treated zebrafish. Drug Chem Toxicol 13:1–8

    CAS  Google Scholar 

  24. Socała K, Nieoczym D, Pieróg M, Wlaź P (2015) Role of the adenosine system and glucose restriction in the acute anticonvulsant effect of caprylic acid in the 6Hz psychomotor seizure test in mice. Prog Neuro-Psychopharmacol Biol 57:44–51

    Article  CAS  Google Scholar 

  25. Joniec-Maciejak I, Wawer A, Turzyńska D, Sobolewska A, Maciejak P, Szyndler J, Mirowska-Guzel D, Płaźnik A (2018) Octanoic acid prevents reduction of striatal dopamine in the MPTP mouse model of Parkinson’s disease. Pharmacol Rep 70(5):988–992

    Article  CAS  PubMed  Google Scholar 

  26. Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  28. Yagi K (1984) Assay for blood plasma or serum. Method enzymol 105:328–331

    Article  CAS  Google Scholar 

  29. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  30. Mylorie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of cupper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520

    Article  Google Scholar 

  31. Habig WH, Jacoby WB (1981) Assays for differentation of glutathion- s- transferases. Methods Enzymol 77:398–405

    Article  CAS  PubMed  Google Scholar 

  32. Beutler E (1975) Gluthatione: red cell metabolism A manual biochemical methods. Grune and Stratton, New York

    Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  34. Meng L, Yuan X, Cao X, Zhang Z (2019) The gut-brain axis in the pathogenesis of Parkinson’s disease. Brain Science Advances 5(2):73–81

    Article  Google Scholar 

  35. Ünal İ, Üstündağ ÜV, Ateş PS, Eğilmezer G, Alturfan AA, Yiğitbaşı T, Emekli-Alturfan E (2019) Rotenone impairs oxidant/antioxidant balance both in brain and intestines in zebrafish. Int J Neurosci 129(4):363–368

    Article  PubMed  CAS  Google Scholar 

  36. Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657

    Article  CAS  PubMed  Google Scholar 

  37. Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777(7–8):789–793

    Article  PubMed  CAS  Google Scholar 

  38. Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16(Suppl 1):34–38

    Article  PubMed  Google Scholar 

  39. Gagné F (2014) Chapter 6 - Oxidative Stress. In: Gagné F (ed) Biochemical Ecotoxicology. Academic Press, Oxford, pp 103–115

    Chapter  Google Scholar 

  40. Bach AC, Bababayn VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36:950–961

    Article  CAS  PubMed  Google Scholar 

  41. Sengupta A, Ghosh M, Bhattacharyya DK (2014) Antioxidative effect of rice bran oil and medium chain fatty acid rich rice bran oil in arsenite induced oxidative stress in rats. J Oleo Sci 63(11):1117–1124

    Article  CAS  PubMed  Google Scholar 

  42. Wang SP, Yang H, Wu JW, Gauthier N, Fukao T, Mitchell GA (2014) Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example. J Hum Evol 77:41–49

    Article  PubMed  Google Scholar 

  43. Schönfeld P, Reiser G (2017) Inhibition of β-oxidation is not a valid therapeutic tool for reducing oxidative stress in conditions of neurodegeneration. J Cereb Blood Flow Metab 37(3):848–854

    Article  PubMed  Google Scholar 

  44. Leszek J, Barreto GE, Gąsiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G (2016) Inflammatory Mechanisms and Oxidative Stress as Key Factors Responsible for Progression of Neurodegeneration: Role of Brain Innate Immune System. CNS Neurol Disord Drug Targets 15(3):329–336

    Article  CAS  PubMed  Google Scholar 

  45. Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s Disease? Front Cell Neurosci 7:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11(8):999–1016

    Article  CAS  PubMed  Google Scholar 

  47. Hang CH, Shi JX, Li JS, Li WQ, Wu W (2005) Expressions of intestinal NF-kappaB, TNF-alpha, and IL-6 following traumatic brain injury in rats. J Surg Res 123(2):188–193

    Article  CAS  PubMed  Google Scholar 

  48. Tufekci KU, Meuwissen R, Genc S, Genc K (2012) Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol 88:69–132

    Article  CAS  PubMed  Google Scholar 

  49. Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson’s Disease. https://doi.org/10.1038/s41531-016-0002-0

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dunn AJ (2006) Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 6(1–2):52–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bertevello PL, De Nardi L, Torrinhas RS, Logullo AF, Waitzberg DL (2012) Partial replacement of ω-6 fatty acids with medium-chain triglycerides, but not olive oil, improves colon cytokine response and damage in experimental colitis. JPEN J Parenter Enteral Nutr 36:442–448

    Article  CAS  PubMed  Google Scholar 

  52. Papada E, Kaliora AC, Gioxari A, Papalois A, Forbes A (2014) Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis. Br J Nutr 111:1213–1220

    Article  CAS  PubMed  Google Scholar 

  53. Kono H, Fujii H, Asakawa M, Maki A, Amemiya H, Hirai Y, Matsuda M, Yamamoto M (2004) Medium-chain triglycerides enhance secretory IgA expression in rat intestine after administration of endotoxin. Am J Physiol Gastrointest Liver Physiol 286:G1081–G1089

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Xue C, Xu Q et al (2019) Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond) 16:40

    Article  CAS  Google Scholar 

  55. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, Neunlist M, Derkinderen P, (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48

    Article  CAS  PubMed  Google Scholar 

  56. Li C, Cai YY, Yan ZX (2018) Brain-derived neurotrophic factor preserves intestinal mucosal barrier function and alters gut microbiota in mice. Kaohsiung J Med Sci 34(3):134–141

    Article  CAS  PubMed  Google Scholar 

  57. Biddinger JE, Fox EA (2014) Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation. J Neurosci 34(31):10379–10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15(10):1748–1757

    Article  CAS  PubMed  Google Scholar 

  59. Ahn EH, Kang SS, Liu X, Cao X, Choi SY, Musazzi K, Mehlen P, Ye K (2020) BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson’s disease pathologies, associated with constipation and motor dysfunctions. Prog Neurobiol 198:101905

    Article  PubMed  CAS  Google Scholar 

  60. Johnson ME, Lim Y, Senthilkumaran M, Zhou X, Bobrovskaya L (2015) Investigation of tyrosine hydroxylase and BDNF in a low-dose rotenone model of Parkinson’s disease. J Chem Neuroanat 70:33–41

    Article  CAS  PubMed  Google Scholar 

  61. Nakajima S, Kunugi H (2020) Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures. Heliyon 6:5

    Article  Google Scholar 

  62. Spector R (1988) Fatty acid transport through the blood-brain barrier. J Neurochem 50:639–643

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EE designed the study. DC, İÜ, UVÜ performed the experiments. EE and DC analyzed the data, prepared the figures and wrote the manuscript. EE, AAA, MA and İE supervised the project. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ebru Emekli-Alturfan.

Ethics declarations

Conflict of interests

The authors declare that they have no competing financial interests.

Ethical approval

Animal experiments, were carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC). All experimental procedures were approved by the Institutional Animal Care and Use Committee of Marmara University (Protocol number: 43.2020.mar).

Consent for publication

All authors give their consent for the publication of the manuscript entitled “Caprylic Acid Ameliorates Rotenone Induced Inflammation and Oxidative Stress in the Gut-Brain Axis in Zebrafish” to be published in the Molecular Biology Reports.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cansız, D., Ünal, İ., Üstündağ, Ü.V. et al. Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Mol Biol Rep 48, 5259–5273 (2021). https://doi.org/10.1007/s11033-021-06532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06532-5

Keywords

Navigation