Skip to main content

Advertisement

Log in

Involvement of Rac1 in macrophage activation by brain-derived neurotrophic factor

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation, which directs the quality of tissue repair. This study aimed to investigate the effect of BDNF on the phagocytic activity of RAW264.7 cells. In addition, we studied the effect of BDNF on guanosine triphosphatase (GTP)-RAS-related C3 botulinus toxin substrate (Rac)1 and phospho-Rac1 levels in RAW264.7 cells. Rac1 inhibitor inhibited BDNF-induced phagocytosis of latex-beads. In addition, BDNF enhanced Porphyromonas gingivalis (Pg) phagocytosis by RAW264.7 cells as well as latex-beads. We demonstrated for the first time that BDNF enhances phagocytic activity of RAW264.7 cells through Rac1 activation. The present study proposes that BDNF may reduce inflammatory stimuli during BDNF-induced periodontal tissue regeneration through enhanced phagocytic activity of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820

    Article  PubMed  Google Scholar 

  2. Trindade F, Oppenheim FG, Helmerhorst EJ, Amado F, Gomes PS, Vitorino R (2014) Uncovering the molecular networks in periodontitis. Proteom Clin Appl 8:748–761

    Article  CAS  Google Scholar 

  3. Bosshardt DD, Sculean A (2000) Does periodontal tissue regeneration really work? Periodontol 2009(51):208–219

    Google Scholar 

  4. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403

    Article  CAS  PubMed  Google Scholar 

  5. Ebendal T (1992) Function and evolution in the NGF family and its receptors. J Neurosci Res 32:461–470

    Article  CAS  PubMed  Google Scholar 

  6. Johnson D, Lanahan A, Buck CR, Sehgal A, Morgan C, Mercer E et al (1986) Expression and structure of the human NGF receptor. Cell 47:545–554

    Article  CAS  PubMed  Google Scholar 

  7. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  CAS  PubMed  Google Scholar 

  8. Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N et al (2008) Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 283:16259–16267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kajiya M, Shiba H, Fujita T, Takeda K, Uchida Y, Kawaguchi H et al (2009) Brain-derived neurotrophic factor protects cementoblasts from serum starvation-induced cell death. J Cell Physiol 221:696–706

    Article  CAS  PubMed  Google Scholar 

  10. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN et al (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470:113–117

    Article  CAS  PubMed  Google Scholar 

  12. Nakanishi T, Takahashi K, Aoki C, Nishikawa K, Hattori T, Taniguchi S (1994) Expression of nerve growth factor family neurotrophins in a mouse osteoblastic cell line. Biochem Biophys Res Commun 198:891–897

    Article  CAS  PubMed  Google Scholar 

  13. Takeda K, Shiba H, Mizuno N, Hasegawa N, Mouri Y, Hirachi A et al (2005) Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng 11:1618–1629

    Article  CAS  PubMed  Google Scholar 

  14. Takeda K, Sakai N, Shiba H, Nagahara T, Fujita T, Kajiya M et al (2011) Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng Part A 17:955–967

    Article  CAS  PubMed  Google Scholar 

  15. Jimbo R, Tovar N, Janal MN, Mousa R, Marin C, Yoo D et al (2014) The effect of brain-derived neurotrophic factor on periodontal furcation defects. PLoS ONE 9:e84845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sasaki S, Takeda K, Takewaki M, Ouhara K, Kajiya M, Mizuno N et al (2019) BDNF/HMW-HA complex as an adjunct to nonsurgical periodontal treatment of ligature-induced periodontitis in dogs. J Periodontol 90:98–109

    Article  CAS  PubMed  Google Scholar 

  17. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  18. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  19. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chang F, Lemmon C, Lietha D, Eck M, Romer L (2011) Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS ONE 6:e28587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Briancon-Marjollet A, Ghogha A, Nawabi H, Triki I, Auziol C, Fromont S et al (2008) Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 28:2314–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hordijk PL (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453–462

    Article  CAS  PubMed  Google Scholar 

  23. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al (2007) Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67:8089–8094

    Article  CAS  PubMed  Google Scholar 

  24. Nikolova E, Mitev V, Zhelev N, Deroanne CF, Poumay Y (2007) The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc. Biochem Biophys Res Commun 359:834–839

    Article  CAS  PubMed  Google Scholar 

  25. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    Article  CAS  PubMed  Google Scholar 

  26. Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G et al (2008) Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem 283:7983–7993

    Article  CAS  PubMed  Google Scholar 

  27. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res 98:176–185

    Article  CAS  PubMed  Google Scholar 

  28. Mao Y, Finnemann SC (2015) Regulation of phagocytosis by Rho GTPases. Small GTPases 6:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeda K, Tokunaga N, Aida Y, Kajiya M, Ouhara K, Sasaki S et al (2017) Brain-derived neurotrophic factor inhibits peptidoglycan-induced inflammatory cytokine expression in human dental pulp cells. Inflammation 40:240–247

    Article  CAS  PubMed  Google Scholar 

  30. Asami T, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S (2006) Autocrine activation of cultured macrophages by brain-derived neurotrophic factor. Biochem Biophys Res Commun 344:941–947

    Article  CAS  PubMed  Google Scholar 

  31. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  32. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  33. Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grunicke HH (2009) Coordinated regulation of Ras-, Rac-, and Ca2+-dependent signaling pathways. Crit Rev Eukaryot Gene Expr 19:139–169

    Article  CAS  PubMed  Google Scholar 

  36. Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17:246–250

    Article  PubMed  CAS  Google Scholar 

  37. Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B et al (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS ONE 7:e44358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwon T, Kwon DY, Chun J, Kim JH, Kang SS (2000) Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 275:423–428

    Article  CAS  PubMed  Google Scholar 

  39. Schoentaube J, Olling A, Tatge H, Just I, Gerhard R (2009) Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A. Cell Microbiol 11:1816–1826

    Article  CAS  PubMed  Google Scholar 

  40. Hurme M, Viherluoto J, Nordstrom T (1992) The effect of calcium mobilization on LPS-induced IL-1 beta production depends on the differentiation stage of the monocytes/macrophages. Scand J Immunol 36:507–511

    Article  CAS  PubMed  Google Scholar 

  41. Liu YC, Lerner UH, Teng YT (2000) Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2010(52):163–206

    Google Scholar 

  42. Tajima K, Akanuma S, Matsumoto-Akanuma A, Yamanaka D, Ishibashi KI, Adachi Y et al (2018) Activation of macrophages by a laccase-polymerized polyphenol is dependent on phosphorylation of Rac1. Biochem Biophys Res Commun 495:2209–2213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grants JP25463218 [Grant-in-Aid for scientific Reserch (C)]. We thank the Analysis Center of Life Science of Hiroshima University for the use of facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed and gave their final approval to the submitted manuscript.

Corresponding author

Correspondence to Katsuhiro Takeda.

Ethics declarations

Conflict of interest

The authors of the paper declare that there are no conflicts of interest.

Research involving human and animal rights

This article contains no human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, S., Takeda, K., Ouhara, K. et al. Involvement of Rac1 in macrophage activation by brain-derived neurotrophic factor. Mol Biol Rep 48, 5249–5257 (2021). https://doi.org/10.1007/s11033-021-06531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06531-6

Keywords

Navigation