Skip to main content

Advertisement

Log in

Induction of oxidative stress and apoptosis in the injured brain: potential relevance to brain regeneration in zebrafish

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent findings suggest a significant role of the brain-derived neurotrophic factor (BDNF) as a mediator of brain regeneration following a stab injury in zebrafish. Since BDNF has been implicated in many physiological processes, we hypothesized that these processes are affected by brain injury in zebrafish. Hence, we examined the impact of stab injury on oxidative stress and apoptosis in the adult zebrafish brain. Stab wound injury (SWI) was induced in the right telencephalic hemisphere of the adult zebrafish brain and examined at different time points. The biochemical variables of oxidative stress insult and transcript levels of antioxidant genes were assessed to reflect upon the oxidative stress levels in the brain. Immunohistochemistry was performed to detect the levels of early apoptotic marker protein cleaved caspase-3, and the transcript levels of pro-apoptotic and anti-apoptotic genes were examined to determine the effect of SWI on apoptosis. The activity of antioxidant enzymes, the level of lipid peroxidation (LPO) and reduced glutathione (GSH) were significantly increased in the injured fish brain. SWI also enhanced the expression of cleaved caspase-3 protein and apoptosis-related gene transcripts. Our results indicate induction of oxidative stress and apoptosis in the telencephalon of adult zebrafish brain by SWI. These findings contribute to the overall understanding of the pathophysiology of traumatic brain injury and adult neurogenesis in the zebrafish model and raise new questions about the compensatory physiological mechanisms in response to traumatic brain injury in the adult zebrafish brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and materials supporting this study will be made available on request.

References

  1. Rihel J, Ghosh M (2016) Zebrafish. In: Hock FJ (ed) Drug discovery and evaluation pharmacological assays. Springer International Publishing, Cham, pp 4071–4155. https://doi.org/10.1007/978-3-319-05392-9_135

    Chapter  Google Scholar 

  2. Sassen WA, Köster RW (2015) A molecular toolbox for genetic manipulation of zebrafish. Adv Genom Genet 5:151–163. https://doi.org/10.2147/AGG.S57585

    Article  Google Scholar 

  3. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75. https://doi.org/10.1016/j.tips.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kizil C, Kaslin J, Kroehne V, Brand M (2012) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72(3):429–461. https://doi.org/10.1002/dneu.20918

    Article  PubMed  Google Scholar 

  5. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138(22):4831–4841. https://doi.org/10.1242/dev.072587

    Article  CAS  PubMed  Google Scholar 

  6. Gemberling M, Bailey TJ, Hyde DR, Poss KD (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29(11):611–620. https://doi.org/10.1016/j.tig.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Anand SK, Mondal AC (2017) Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 77(10):1188–1205. https://doi.org/10.1002/dneu.22508

    Article  PubMed  Google Scholar 

  8. Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech 5(2):200–209. https://doi.org/10.1242/dmm.007336

    Article  CAS  PubMed  Google Scholar 

  9. Anand SK, Mondal AC (2018) TrkB receptor antagonism inhibits stab injury induced proliferative response in adult zebrafish (Danio rerio) brain. Neurosci Lett 672:28–33. https://doi.org/10.1016/j.neulet.2018.02.040

    Article  CAS  PubMed  Google Scholar 

  10. Cacialli P, D’angelo L, Kah O, Coumailleau P, Gueguen M-M, Pellegrini E, Lucini C (2018) Neuronal expression of brain derived neurotrophic factor in the injured telencephalon of adult zebrafish. J Comp Neurol 526(4):569–582. https://doi.org/10.1002/cne.24352

    Article  CAS  PubMed  Google Scholar 

  11. Bhave SV, Ghoda L, Hoffman PL (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of nmda in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci 19(9):3277–3286. https://doi.org/10.1523/jneurosci.19-09-03277.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen SD, Wu CL, Hwang WC, Yang DI (2017) More insight into bdnf against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 18(3):545. https://doi.org/10.3390/ijms18030545

    Article  CAS  PubMed Central  Google Scholar 

  13. Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H (2011) Protective action of neurotrophic factors and estrogen against oxidative stress-mediated neurodegeneration. J Toxicol 2011:405194–405194. https://doi.org/10.1155/2011/405194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp : JoVE 90:e51753. https://doi.org/10.3791/51753

    Article  CAS  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  16. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  PubMed  Google Scholar 

  17. Fatima M, Srivastav S, Ahmad MH, Mondal AC (2019) Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: role of GSK-3β. Sci Rep. https://doi.org/10.1038/s41598-018-38085-2

  18. Fatima M, Ahmad MH, Srivastav S, Rizvi MA, Mondal AC (2020) A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochem Int 136:104730. https://doi.org/10.1016/j.neuint.2020.104730

    Article  CAS  PubMed  Google Scholar 

  19. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  20. Srivastav S, Anand BG, Fatima M, Prajapati KP, Yadav SS, Kar K, Mondal AC (2020) Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in drosophila melanogaster. ACS Chem Neurosci 11(22):3772–3785. https://doi.org/10.1021/acschemneuro.0c00366

    Article  CAS  PubMed  Google Scholar 

  21. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86(1):271–278. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  CAS  PubMed  Google Scholar 

  22. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169. https://doi.org/10.1159/000136485

    Article  CAS  PubMed  Google Scholar 

  23. Srivastav S, Fatima M, Mondal AC (2018) Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int 121:98–107. https://doi.org/10.1016/j.neuint.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK (2018) Oxidative stress: major threat in traumatic brain injury. CNS & Neurol Disord-Drug Targets 17(9):689–695. https://doi.org/10.2174/1871527317666180627120501

    Article  CAS  Google Scholar 

  25. Petronilho F, Feier G, de Souza B, Guglielmi C, Constantino LS, Walz R, Quevedo J, Dal-Pizzol F (2010) Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res 164(2):316–320. https://doi.org/10.1016/j.jss.2009.04.031

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez-Rodríguez A, Egea-Guerrero JJ, Murillo-Cabezas F, Carrillo-Vico A (2014) Oxidative stress in traumatic brain injury. Curr Med Chem 21(10):1201–1211. https://doi.org/10.2174/0929867321666131217153310

    Article  CAS  PubMed  Google Scholar 

  27. Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807. https://doi.org/10.3171/jns.1986.64.5.0803

    Article  CAS  PubMed  Google Scholar 

  28. Lutton EM, Farney SK, Andrews AM, Shuvaev VV, Chuang G-Y, Muzykantov VR, Ramirez SH (2019) Endothelial Targeted Strategies to Combat Oxidative Stress: Improving Outcomes in Traumatic Brain Injury. Front Neurol 10:582. https://doi.org/10.3389/fneur.2019.00582

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miller AA, Drummond GR, Sobey CG (2006) Reactive oxygen species in the cerebral circulation: are they all bad? Antioxid Redox Signal 8(7–8):1113–1120. https://doi.org/10.1089/ars.2006.8.1113

    Article  CAS  PubMed  Google Scholar 

  30. Zagorac D, Yamaura K, Zhang C, Roman Richard J, Harder David R (2005) The effect of superoxide anion on autoregulation of cerebral blood flow. Stroke 36(12):2589–2594. https://doi.org/10.1161/01.STR.0000189997.84161.95

    Article  CAS  PubMed  Google Scholar 

  31. Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, Borlongan CV (2015) Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat 11:97–106. https://doi.org/10.2147/ndt.s65815

    Article  PubMed  PubMed Central  Google Scholar 

  32. Szarka N, Pabbidi MR, Amrein K, Czeiter E, Berta G, Pohoczky K, Helyes Z, Ungvari Z, Koller A, Buki A, Toth P (2018) Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived h(2)o(2) and trpv4-dependent activation of bk(ca) channels. J Neurotrauma 35(7):930–939. https://doi.org/10.1089/neu.2017.5056

    Article  PubMed  PubMed Central  Google Scholar 

  33. Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, Huang Z (2021) Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5816837

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhuang S, Liu B, Guo S, Xue Y, Wu L, Liu S, Zhang C, Ni X (2021) Germacrone alleviates neurological deficits following traumatic brain injury by modulating neuroinflammation and oxidative stress. BMC Complement Med Ther 21(1):6. https://doi.org/10.1186/s12906-020-03175-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anand SK, Mondal AC (2020) Neuroanatomical distribution and functions of brain-derived neurotrophic factor in zebrafish (Danio rerio) brain. J Neurosci Res 98(5):754–763. https://doi.org/10.1002/jnr.24536

    Article  CAS  PubMed  Google Scholar 

  36. Eckl J, Sima S, Marcus K, Lindemann C, Richter K (2017) Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes. PLoS ONE 12(10):e0186386. https://doi.org/10.1371/journal.pone.0186386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460(2):251–256. https://doi.org/10.1016/s0014-5793(99)01359-9

    Article  CAS  PubMed  Google Scholar 

  38. Srisutthisamphan K, Jirakanwisal K, Ramphan S, Tongluan N, Kuadkitkan A, Smith DR (2018) Hsp90 interacts with multiple dengue virus 2 proteins. Sci Rep 8(1):4308. https://doi.org/10.1038/s41598-018-22639-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tukaj S, Węgrzyn G (2016) Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 21(2):213–218. https://doi.org/10.1007/s12192-016-0670-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain pathol 14(2):215–222. https://doi.org/10.1111/j.1750-3639.2004.tb00056.x

    Article  PubMed  Google Scholar 

  41. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17(10):927–938. https://doi.org/10.1089/neu.2000.17.927

    Article  CAS  PubMed  Google Scholar 

  42. McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen XY, Baker AJ (2017) A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma 34(7):1382–1393. https://doi.org/10.1089/neu.2016.4497

    Article  PubMed  Google Scholar 

  43. Wennersten A, Holmin S, Mathiesen T (2003) Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 105(3):281–288. https://doi.org/10.1007/s00401-002-0649-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

ACM highly acknowledges the financial supports from DBT NER (BT/ PR32907/MED/122/227/2019), and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. SKA acknowledges the financial support from CSIR-HRDG, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

ACM conceptualized the study, designed the experiments. SKA and MRS performed the experiments. The manuscript was written by SKA and edited by ACM.

Corresponding author

Correspondence to Amal Chandra Mondal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S.K., Sahu, M.R. & Mondal, A.C. Induction of oxidative stress and apoptosis in the injured brain: potential relevance to brain regeneration in zebrafish. Mol Biol Rep 48, 5099–5108 (2021). https://doi.org/10.1007/s11033-021-06506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06506-7

Keywords

Navigation