Skip to main content

Advertisement

Log in

Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1

    Article  CAS  Google Scholar 

  2. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100(8):3451–3461

    Article  CAS  Google Scholar 

  3. Nematollahi L, Khalaj V, Babazadeh SM, Rahimpour A, Jahandar H, Davami F, Mahboudi F (2012) Periplasmic expression of a novel human bone morphogenetic Protein-7 mutant in Escherichia coli. Avicenna J Med Biotechnol 4(4):178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Srirangan K, Loignon M, Durocher Y (2020) The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 40(6):833–851

    Article  CAS  Google Scholar 

  5. Saunders F, Sweeney B, Antoniou MN, Stephens P, Cain K (2015) Chromatin function modifying elements in an industrial antibody production platform-comparison of UCOE, MAR, STAR and cHS4 elements. PLoS ONE 10(4):0120096

    Article  Google Scholar 

  6. Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN (2017) Ubiquitous chromatin-opening elements (UCOEs): applications in biomanufacturing and gene therapy. Biotechnol Adv 35(5):557–564

    Article  CAS  Google Scholar 

  7. Gopinath C, Chodisetty S, Ghosh A, Nelson EJR (2019) Efficiency of different fragment lengths of the ubiquitous chromatin opening element HNRPA2B1-CBX3 in driving human CD18 gene expression within self-inactivating lentiviral vectors for gene therapy applications. Gene 710:265–272

    Article  CAS  Google Scholar 

  8. Liu M, Maurano MT, Wang H, Qi H, Song CZ, Navas PA, Emery DW, Stamatoyannopoulos JA, Stamatoyannopoulos G (2015) Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 33(2):198–203

    Article  Google Scholar 

  9. Lee C, Critcher R, Zhang J-G, Mills W, Farr C (2000) Distribution of gamma satellite DNA on the human X and Y chromosomes suggests that it is not required for mitotic centromere function. Chromosoma 109(6):381–389

    Article  CAS  Google Scholar 

  10. Kim J-H, Ebersole T, Kouprina N, Noskov VN, Ohzeki J-I, Masumoto H, Mravinac B, Sullivan BA, Pavlicek A, Dovat S (2009) Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res 19(4):533–544

    Article  CAS  Google Scholar 

  11. Lee NC, Kononenko AV, Lee H-S, Tolkunova EN, Liskovykh MA, Masumoto H, Earnshaw WC, Tomilin AN, Larionov V, Kouprina N (2013) Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cell Mol Life Sci 70(19):3723–3737

    Article  CAS  Google Scholar 

  12. Hoeksema F, van Blokland R, Siep M, Hamer K, Siersma T, den Blaauwen J, Verhees J, Otte AP (2011) The use of a stringent selection system allows the identification of DNA elements that augment gene expression. Mol Biotechnol 48(1):19–29

    Article  CAS  Google Scholar 

  13. Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL, Kelder A, Otte AP (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21(5):553–558

    Article  CAS  Google Scholar 

  14. Otte AP, Kwaks TH, van Blokland RJ, Sewalt RG, Verhees J, Klaren VN, Siersma TK, Korse HW, Teunissen NC, Botschuijver S, van Mer C, Man SY (2007) Various expression-augmenting DNA elements benefit from STAR-Select, a novel high stringency selection system for protein expression. Biotechnol Prog 23(4):801–807

    Article  CAS  Google Scholar 

  15. Ho SC, Bardor M, Feng H, Tong YW, Song Z, Yap MG, Yang Y (2012) IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J Biotechnol 157(1):130–139

    Article  CAS  Google Scholar 

  16. Kaddoura R, Orabi B, Salam AM (2020) Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess 9(1):129–144

    Article  Google Scholar 

  17. Sinning D, Landmesser U (2020) Low-density lipoprotein-cholesterol lowering strategies for prevention of atherosclerotic cardiovascular disease: focus on siRNA treatment targeting PCSK9 (Inclisiran). Curr Cardiol Rep 22(12):176

    Article  Google Scholar 

  18. Sobati S, Shakouri A, Edalati M, Mohammadnejad D, Parvan R, Masoumi J, Abdolalizadeh J (2020) PCSK9: a key target for the treatment of cardiovascular disease (CVD). Adv Pharm Bull 10(4):502–511

    Article  CAS  Google Scholar 

  19. Hoseinpoor R, Kazemi B, Rajabibazl M, Rahimpour A (2020) Improving the expression of anti-IL-2Ralpha monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. J Biotechnol 324:112–120

    Article  CAS  Google Scholar 

  20. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930

    Article  CAS  Google Scholar 

  21. Romanova N, Noll T (2018) Engineered and natural promoters and chromatin-modifying elements for recombinant protein expression in CHO Cells. Biotechnol J 13(3):e1700232

    Article  Google Scholar 

  22. Hunter M, Yuan P, Vavilala D, Fox M (2019) Optimization of protein expression in mammalian cells. Curr Protoc Protein Sci 95(1):e77

    Article  Google Scholar 

  23. Skipper KA, Hollensen AK, Antoniou MN, Mikkelsen JG (2019) Sustained transgene expression from sleeping beauty DNA transposons containing a core fragment of the HNRPA2B1-CBX3 ubiquitous chromatin opening element (UCOE). BMC Biotechnol 19(1):75

    Article  Google Scholar 

  24. Jia YL, Guo X, Wang XC, Wang TY (2019) Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells. Biotechnol Lett 41(6–7):701–709

    Article  CAS  Google Scholar 

  25. Ho SC, Mariati YJH, Fang SG, Yang Y (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol 57(2):138–144

    Article  CAS  Google Scholar 

  26. Girod PA, Zahn-Zabal M, Mermod N (2005) Use of the chicken lysozyme 5’ matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng 91(1):1–11

    Article  CAS  Google Scholar 

  27. Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V (2018) Human artificial chromosome with regulated centromere: a tool for genome and cancer studies. ACS Synth Biol 7(9):1974–1989

    Article  CAS  Google Scholar 

  28. Naderi F, Hashemi M, Bayat H, Mohammadian O, Pourmaleki Eh, Etemadzadeh MH, Rahimpour A (2018) The augmenting effects of the tDNA insulator on stable expression of monoclonal antibody in chinese hamster ovary cells. Monoclon Antibod Immunodiagn Immunother 37(5):200–206

    Article  CAS  Google Scholar 

  29. Ng SK (2012) Generation of high-expressing cells by methotrexate amplification of destabilized dihydrofolate reductase selection marker. Methods Mol Biol 801:161–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. Alexey Tomilin (Institute of Cytology, Russian Academy of Science, Russia) for providing the human gamma-satellite element.

Funding

This study was supported by Deputy of Research and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant Number 18150) and Shiraz University, Shiraz, Iran (Grant Number 96GCU4M1984).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marzieh Moosavi-Nasab or Azam Rahimpour.

Ethics declarations

Conflict of interest

Authors declare they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboudi, S., Moosavi-Nasab, M., Kazemi, B. et al. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 48, 4405–4412 (2021). https://doi.org/10.1007/s11033-021-06456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06456-0

Keywords

Navigation