Skip to main content

Advertisement

Log in

Potential role of microRNAs as biomarkers in human glioblastoma: a mini systematic review from 2015 to 2020

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most common, aggressive and malignant type of glioma, with poor prognosis, despite advances in medical knowledge and technology. It's known that some microRNAs (miRNAs) can be dysregulated and associated with tumors. We aim to investigate miRNAs that may have a role as potential biomarkers in human glioblastoma. A search was performed using PubMed, LILACS and SCIELO databases to find papers from 2015 to 2020, related to human in vitro and ex vivo data. From 99 articles, 10 were eligible and 13 dysregulated miRNAs were found with description of regulation, target(s), pathway(s) and mechanism(s). The miRNAs of interest were found and seem to be involved in development and progression of glioblastoma and used as target therapies. Understanding the mechanisms in which those miRNAs are involved and their role in epigenetic pathways that lead to cancer, as well as their potential in clinical application, may improve GBM clinical outcome (CRD42020182706, 07/10/2020, retrospectively registered).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Scheithauer BW (2009) Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol 19(4):551–564. https://doi.org/10.1111/j.1750-3639.2008.00192.x

    Article  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferreira WAS, do Pinheiro DR, da Costa Junior CA et al (2016) An update on the epigenetics of glioblastomas. Epigenomics 8(9):1289–1305. https://doi.org/10.2217/epi-2016-0040

    Article  CAS  PubMed  Google Scholar 

  4. Omuro A (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. https://doi.org/10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  5. Thakkar JP, Dolecek TA, Horbinski C et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Piñeros M, Sierra MS, Izarzugaza MI et al (2016) Descriptive epidemiology of brain and central nervous system cancers in Central and South America. Cancer Epidemiol 44(1):S141–S149. https://doi.org/10.1016/j.canep.2016.04.007

    Article  PubMed  Google Scholar 

  7. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  8. Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35(21):2402–2409. https://doi.org/10.1200/JCO.2017.73.0119

    Article  CAS  PubMed  Google Scholar 

  9. Inda MM, Bonavia R, Seoane J (2014) Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 6(1):226–239. https://doi.org/10.3390/cancers6010226

    Article  CAS  Google Scholar 

  10. Tucha O, Smely C, Preier M et al (2000) Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 47(2):324–334. https://doi.org/10.1097/00006123-200008000-00011

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert MR (2011) Recurrent glioblastoma: a fresh look at current therapies and emerging novel approaches. Semin Oncol 38(4):S21–S33. https://doi.org/10.1053/j.seminoncol.2011.09.008

    Article  PubMed  Google Scholar 

  12. Stupp R, Brada M, van den Bent MJ et al (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(3):iii93–iii101. https://doi.org/10.1093/annonc/mdu050

    Article  PubMed  Google Scholar 

  13. Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202. https://doi.org/10.1016/j.ejca.2012.04.011

    Article  PubMed  Google Scholar 

  14. Tamimi AF, Juweid M (2017) Glioblastoma. In: De Vleeschouwer S (ed). Brisbane (AU). Codon Publications, Brisbane, Australia, 1st ed. pp 143–154.

  15. Thumma SR, Elaimy AL, Daines N et al (2012) Long-term survival after gamma knife radiosurgery in a case of recurrent glioblastoma multiforme: a case report and review of the literature. Case Rep Med 2012:1–6. https://doi.org/10.1155/2012/545492

    Article  Google Scholar 

  16. Lieberman F (2017) Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res 6:1892–1900

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bing ZT, Yang GH, Xiong J et al (2016) Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis. IET Syst Biol 10(6):244–251. https://doi.org/10.1049/iet-syb.2016.0004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khaddour K, Johanns TM, Ansstas G (2020) The landscape of novel therapeutics and challenges in glioblastoma multiforme: contemporary state and future directions. Pharmaceuticals (Basel) 13(11):389–415. https://doi.org/10.3390/ph13110389

    Article  CAS  Google Scholar 

  19. Szopa W, Burley TA, Kramer-Marek G et al (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:1–13. https://doi.org/10.1155/2017/8013575

    Article  CAS  Google Scholar 

  20. Rasmussen BK, Hansen S, Laursen RJ et al (2017) Epidemiology of glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I-IV in the Danish neuro-oncology registry. J Neurooncol 135(3):571–579. https://doi.org/10.1007/s11060-017-2607-5

    Article  PubMed  Google Scholar 

  21. Schwartzbaum JA, Fisher JL, Aldape KD et al (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–516. https://doi.org/10.1038/ncpneuro0289

    Article  PubMed  Google Scholar 

  22. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zottel A, Šamec N, Videtič Paska A et al (2020) Coding of glioblastoma progression and therapy resistance through long noncoding RNAs. Cancers (Basel) 12(7):1842. https://doi.org/10.3390/cancers12071842

    Article  CAS  Google Scholar 

  24. Shea A, Harish V, Afzal Z et al (2016) MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 5(8):1917–1946. https://doi.org/10.1002/cam4.775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Brien J, Hayder H, Zayed Y et al (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:1–12. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  26. Tan W, Liu B, Qu S, Liang G et al (2018) MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett 15(3):2735–2742. https://doi.org/10.3892/ol.2017.7638

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Pan X, Cobb GP et al (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12. https://doi.org/10.1016/j.ydbio.2006.08.028

    Article  CAS  PubMed  Google Scholar 

  28. Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang BC, Ma J (2015) Role of microRNAs in malignant glioma. Chin Med J (Engl) 128(9):1238–1244. https://doi.org/10.4103/0366-6999.156141

    Article  CAS  Google Scholar 

  30. Gabriely G, Yi M, Narayan RS et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71(10):3563–3572. https://doi.org/10.1158/0008-5472.CAN-10-3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  32. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  33. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. https://doi.org/10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matos B, Bostjancic E, Matjasic A et al (2018) Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiol Oncol 52(4):422–432. https://doi.org/10.2478/raon-2018-0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silber J, James CD, Hodgson JG (2009) microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 11(3):208–222. https://doi.org/10.1007/s12017-009-8087-9

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Dutta A, Abounader R (2012) The role of microRNAs in glioma initiation and progression. Front Biosci 17:700–712. https://doi.org/10.2741/3952

    Article  CAS  PubMed Central  Google Scholar 

  37. Walaya A, Yang M, Xiao D (2018) Therapeutic implication of miRNA in human disease. Antisense therapy. IntechOpen, London, United Kingdom

    Google Scholar 

  38. Henriksen M, Johnsen KB, Andersen HH (2014) microRNA expression signatures determine prognosis and survival in glioblastoma multiforme–a systematic overview. Mol Neurobiol 50(3):896–913. https://doi.org/10.1007/s12035-014-8668-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mucaj V, Lee SS, Skuli N et al (2015) microRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene 34(17):2204–2214. https://doi.org/10.1038/onc.2014.168

    Article  CAS  PubMed  Google Scholar 

  40. Que T, Song Y, Liu Z et al (2015) Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34(38):4952–4963. https://doi.org/10.1038/onc.2014.419

    Article  CAS  PubMed  Google Scholar 

  41. Brower JV, Clark PA, Lyon W et al (2014) microRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem Int 77:68–77. https://doi.org/10.1016/j.neuint.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong X, Li G, Yuan Y et al (2012) MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS ONE 7(8):e41523. https://doi.org/10.1371/journal.pone.0041523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kmet LM, Lee RC, Cook LS et al (2004) Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Alberta Heritage Foundation for Medical Research, Edmondton, Canada

    Google Scholar 

  45. Ben-Hamo R, Zilberberg A, Cohen H et al (2016) hsa-miR-9 controls the mobility behavior of glioblastoma cells via regulation of MAPK14 signaling elements. Oncotarget 7(17):23170–23181

    Article  PubMed  Google Scholar 

  46. Gu JJ, Zhang JH, Chen HJ et al (2016) MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells. Int J Mol Med 37(6):1587–1593. https://doi.org/10.3892/ijmm.2016.2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ayala-Ortega E, Arzate-Mejía R, Pérez-Molina R et al (2016) Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer 16(226):1–12. https://doi.org/10.1186/s12885-016-2273-6

    Article  CAS  Google Scholar 

  48. Ho KH, Chang CK, Chen PH et al (2018) miR-4725-3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. J Neurochem 146(3):269–288. https://doi.org/10.1111/jnc.14459

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Xu J, Li H et al (2015) miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget 6(30):29129–29142

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahn SH, Ahn JH, Ryu DR et al (2018) Effect of necrosis on the miRNA-mRNA regulatory network in CRT-MG human astroglioma cells. Cancer Res Treat 50(2):382–397. https://doi.org/10.4143/crt.2016.551

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Xu XK, Li JL et al (2017) MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget 8(14):22783–22799

    Article  PubMed  PubMed Central  Google Scholar 

  52. Toraih EA, Alghamdi SA, El-Wazir A et al (2018) Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS ONE 13(10):e0198231. https://doi.org/10.1371/journal.pone.0198231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li H, Yu L, Liu J et al (2017) miR-320a functions as a suppressor for gliomas by targeting SND1 and β-catenin, and predicts the prognosis of patients. Oncotarget 8(12):19723–19737

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu N, Zhang L, Wang Z et al (2017) MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget 8:19244–19254

    Article  PubMed  Google Scholar 

  55. Shi C, Ren L, Sun C et al (2017) miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer 117:1036–1047. https://doi.org/10.1038/bjc.2017.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang H, Tao T, Yan W et al (2015) Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep 5:13072. https://doi.org/10.1038/srep13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao X, Zhu X, Sun Y, Liu J (2017) MicroRNA-141 inhibits the self-renewal of glioblastoma stem cells via Jagged1. Mol Med Reports 16:167–173

    Article  CAS  Google Scholar 

  58. Yin J, Zeng A, Zhang Z et al (2019) Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMed 42:238–251

    Article  Google Scholar 

Download references

Funding

This work was financed in part by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior—Brasil (CAPES), under finance code 001. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Contributions

Menezes M. R. wrote the paper; Menezes M. R., Acioli M. E. A., Trindade A. C. L. and Silva S. P. performed literature screening and analysis; Lima R. E., Teixeira V. G. S. and Vasconcelos L. R. S. revised the paper and gave primordial considerations.

Corresponding author

Correspondence to Manuela Rocha de Menezes.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict to interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, M.R., Acioli, M.E.A., da Trindade, A.C.L. et al. Potential role of microRNAs as biomarkers in human glioblastoma: a mini systematic review from 2015 to 2020. Mol Biol Rep 48, 4647–4658 (2021). https://doi.org/10.1007/s11033-021-06423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06423-9

Keywords