Abstract
Glioblastoma (GBM) is the most common, aggressive and malignant type of glioma, with poor prognosis, despite advances in medical knowledge and technology. It's known that some microRNAs (miRNAs) can be dysregulated and associated with tumors. We aim to investigate miRNAs that may have a role as potential biomarkers in human glioblastoma. A search was performed using PubMed, LILACS and SCIELO databases to find papers from 2015 to 2020, related to human in vitro and ex vivo data. From 99 articles, 10 were eligible and 13 dysregulated miRNAs were found with description of regulation, target(s), pathway(s) and mechanism(s). The miRNAs of interest were found and seem to be involved in development and progression of glioblastoma and used as target therapies. Understanding the mechanisms in which those miRNAs are involved and their role in epigenetic pathways that lead to cancer, as well as their potential in clinical application, may improve GBM clinical outcome (CRD42020182706, 07/10/2020, retrospectively registered).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Scheithauer BW (2009) Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol 19(4):551–564. https://doi.org/10.1111/j.1750-3639.2008.00192.x
Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4
Ferreira WAS, do Pinheiro DR, da Costa Junior CA et al (2016) An update on the epigenetics of glioblastomas. Epigenomics 8(9):1289–1305. https://doi.org/10.2217/epi-2016-0040
Omuro A (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. https://doi.org/10.1001/jama.2013.280319
Thakkar JP, Dolecek TA, Horbinski C et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275
Piñeros M, Sierra MS, Izarzugaza MI et al (2016) Descriptive epidemiology of brain and central nervous system cancers in Central and South America. Cancer Epidemiol 44(1):S141–S149. https://doi.org/10.1016/j.canep.2016.04.007
Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1
Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35(21):2402–2409. https://doi.org/10.1200/JCO.2017.73.0119
Inda MM, Bonavia R, Seoane J (2014) Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 6(1):226–239. https://doi.org/10.3390/cancers6010226
Tucha O, Smely C, Preier M et al (2000) Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 47(2):324–334. https://doi.org/10.1097/00006123-200008000-00011
Gilbert MR (2011) Recurrent glioblastoma: a fresh look at current therapies and emerging novel approaches. Semin Oncol 38(4):S21–S33. https://doi.org/10.1053/j.seminoncol.2011.09.008
Stupp R, Brada M, van den Bent MJ et al (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(3):iii93–iii101. https://doi.org/10.1093/annonc/mdu050
Stupp R, Wong ET, Kanner AA et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202. https://doi.org/10.1016/j.ejca.2012.04.011
Tamimi AF, Juweid M (2017) Glioblastoma. In: De Vleeschouwer S (ed). Brisbane (AU). Codon Publications, Brisbane, Australia, 1st ed. pp 143–154.
Thumma SR, Elaimy AL, Daines N et al (2012) Long-term survival after gamma knife radiosurgery in a case of recurrent glioblastoma multiforme: a case report and review of the literature. Case Rep Med 2012:1–6. https://doi.org/10.1155/2012/545492
Lieberman F (2017) Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res 6:1892–1900
Bing ZT, Yang GH, Xiong J et al (2016) Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis. IET Syst Biol 10(6):244–251. https://doi.org/10.1049/iet-syb.2016.0004
Khaddour K, Johanns TM, Ansstas G (2020) The landscape of novel therapeutics and challenges in glioblastoma multiforme: contemporary state and future directions. Pharmaceuticals (Basel) 13(11):389–415. https://doi.org/10.3390/ph13110389
Szopa W, Burley TA, Kramer-Marek G et al (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:1–13. https://doi.org/10.1155/2017/8013575
Rasmussen BK, Hansen S, Laursen RJ et al (2017) Epidemiology of glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I-IV in the Danish neuro-oncology registry. J Neurooncol 135(3):571–579. https://doi.org/10.1007/s11060-017-2607-5
Schwartzbaum JA, Fisher JL, Aldape KD et al (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–516. https://doi.org/10.1038/ncpneuro0289
Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020
Zottel A, Šamec N, Videtič Paska A et al (2020) Coding of glioblastoma progression and therapy resistance through long noncoding RNAs. Cancers (Basel) 12(7):1842. https://doi.org/10.3390/cancers12071842
Shea A, Harish V, Afzal Z et al (2016) MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 5(8):1917–1946. https://doi.org/10.1002/cam4.775
O’Brien J, Hayder H, Zayed Y et al (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:1–12. https://doi.org/10.3389/fendo.2018.00402
Tan W, Liu B, Qu S, Liang G et al (2018) MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett 15(3):2735–2742. https://doi.org/10.3892/ol.2017.7638
Zhang B, Pan X, Cobb GP et al (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12. https://doi.org/10.1016/j.ydbio.2006.08.028
Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4
Wang BC, Ma J (2015) Role of microRNAs in malignant glioma. Chin Med J (Engl) 128(9):1238–1244. https://doi.org/10.4103/0366-6999.156141
Gabriely G, Yi M, Narayan RS et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71(10):3563–3572. https://doi.org/10.1158/0008-5472.CAN-10-3568
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035
Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95. https://doi.org/10.1067/mcp.2001.113989
Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. https://doi.org/10.1373/clinchem.2010.147405
Matos B, Bostjancic E, Matjasic A et al (2018) Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiol Oncol 52(4):422–432. https://doi.org/10.2478/raon-2018-0043
Silber J, James CD, Hodgson JG (2009) microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 11(3):208–222. https://doi.org/10.1007/s12017-009-8087-9
Zhang Y, Dutta A, Abounader R (2012) The role of microRNAs in glioma initiation and progression. Front Biosci 17:700–712. https://doi.org/10.2741/3952
Walaya A, Yang M, Xiao D (2018) Therapeutic implication of miRNA in human disease. Antisense therapy. IntechOpen, London, United Kingdom
Henriksen M, Johnsen KB, Andersen HH (2014) microRNA expression signatures determine prognosis and survival in glioblastoma multiforme–a systematic overview. Mol Neurobiol 50(3):896–913. https://doi.org/10.1007/s12035-014-8668-y
Mucaj V, Lee SS, Skuli N et al (2015) microRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene 34(17):2204–2214. https://doi.org/10.1038/onc.2014.168
Que T, Song Y, Liu Z et al (2015) Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34(38):4952–4963. https://doi.org/10.1038/onc.2014.419
Brower JV, Clark PA, Lyon W et al (2014) microRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem Int 77:68–77. https://doi.org/10.1016/j.neuint.2014.06.002
Kong X, Li G, Yuan Y et al (2012) MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS ONE 7(8):e41523. https://doi.org/10.1371/journal.pone.0041523
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7):e1000097
Kmet LM, Lee RC, Cook LS et al (2004) Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Alberta Heritage Foundation for Medical Research, Edmondton, Canada
Ben-Hamo R, Zilberberg A, Cohen H et al (2016) hsa-miR-9 controls the mobility behavior of glioblastoma cells via regulation of MAPK14 signaling elements. Oncotarget 7(17):23170–23181
Gu JJ, Zhang JH, Chen HJ et al (2016) MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells. Int J Mol Med 37(6):1587–1593. https://doi.org/10.3892/ijmm.2016.2580
Ayala-Ortega E, Arzate-Mejía R, Pérez-Molina R et al (2016) Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer 16(226):1–12. https://doi.org/10.1186/s12885-016-2273-6
Ho KH, Chang CK, Chen PH et al (2018) miR-4725-3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. J Neurochem 146(3):269–288. https://doi.org/10.1111/jnc.14459
Liu J, Xu J, Li H et al (2015) miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget 6(30):29129–29142
Ahn SH, Ahn JH, Ryu DR et al (2018) Effect of necrosis on the miRNA-mRNA regulatory network in CRT-MG human astroglioma cells. Cancer Res Treat 50(2):382–397. https://doi.org/10.4143/crt.2016.551
Chen W, Xu XK, Li JL et al (2017) MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget 8(14):22783–22799
Toraih EA, Alghamdi SA, El-Wazir A et al (2018) Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS ONE 13(10):e0198231. https://doi.org/10.1371/journal.pone.0198231
Li H, Yu L, Liu J et al (2017) miR-320a functions as a suppressor for gliomas by targeting SND1 and β-catenin, and predicts the prognosis of patients. Oncotarget 8(12):19723–19737
Liu N, Zhang L, Wang Z et al (2017) MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget 8:19244–19254
Shi C, Ren L, Sun C et al (2017) miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer 117:1036–1047. https://doi.org/10.1038/bjc.2017.255
Wang H, Tao T, Yan W et al (2015) Upregulation of miR-181s reverses mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep 5:13072. https://doi.org/10.1038/srep13072
Gao X, Zhu X, Sun Y, Liu J (2017) MicroRNA-141 inhibits the self-renewal of glioblastoma stem cells via Jagged1. Mol Med Reports 16:167–173
Yin J, Zeng A, Zhang Z et al (2019) Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMed 42:238–251
Funding
This work was financed in part by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior—Brasil (CAPES), under finance code 001. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
Author information
Authors and Affiliations
Contributions
Menezes M. R. wrote the paper; Menezes M. R., Acioli M. E. A., Trindade A. C. L. and Silva S. P. performed literature screening and analysis; Lima R. E., Teixeira V. G. S. and Vasconcelos L. R. S. revised the paper and gave primordial considerations.
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict to interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
de Menezes, M.R., Acioli, M.E.A., da Trindade, A.C.L. et al. Potential role of microRNAs as biomarkers in human glioblastoma: a mini systematic review from 2015 to 2020. Mol Biol Rep 48, 4647–4658 (2021). https://doi.org/10.1007/s11033-021-06423-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-021-06423-9

