Abstract
Conflicting results have been reported regarding the effects of 1,25 OH-vitamin D3 on corneal wound healing. Therefore, we undertook this study to determine whether the observed differences are dose related. The dose-dependent effects of 1,25 OH-vitamin D3 on corneal wound healing were evaluated using scratch assays on human corneal limbal-epithelial cells (HCLEs) and in vivo mouse corneal epithelial debridement. To evaluate the anti-inflammatory effects of 1,25 OH-vitamin D3, macrophages were stimulated by a Toll-Like Receptor (TLR) ligand followed by treatment with the 10−6 M, 10−7 M and 10−8 M 1,25 OH-vitamin D3. 10−7 M 1,25 OH-vitamin D3 induced faster scratch wound closure compared with the other concentrations of 1,25 OH-vitamin D3 tested (10–6 M and 10–8 M), and 0.02% ethanol as a control (85.8 ± 2.6%, 33.9 ± 6.74%, 32.6 ± 3.35%, and 31.6 ± 3.99%, respectively, P < 0.0001). Single-time treatment with 10–7 M 1,25 OH-vitamin D3 also significantly improved the healing of mouse corneal epithelial wound compared to multiple treatments and control (74.1 ± 17.3% vs. 52.4 ± 11.6% and 45.8 ± 13.4%, respectively). Polyinosinic: polycytidylic acid (poly [I:C])-stimulated macrophage cells and 10−7 M 1,25 OH-vitamin D3 significantly decreased gene expression of ICAM1, TLR3, IL6, IL8, and TNFα (P < 0.0001). Our results suggest the dose-dependent therapeutic effect of 1,25 OH-vitamin D3 in corneal wound healing which can be potentially used as a non-invasive option in the treatment of corneal wounds.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary information files).
References
Heaney RP (2008) Vitamin D in health and disease. Clin J Am Soc Nephrol 3(5):1535–1541. https://doi.org/10.2215/CJN.01160308
Mostafa WZ, Hegazy RA (2015) Vitamin D and the skin: focus on a complex relationship: a review. J Adv Res 6(6):793–804. https://doi.org/10.1016/j.jare.2014.01.011
Yin Z, Pintea V, Lin Y, Hammock BD, Watsky MA (2011) Vitamin D enhances corneal epithelial barrier function. Invest Opthalmol Vis Sci 52(10):7359. https://doi.org/10.1167/iovs.11-7605
Lin Y, Ubels JL, Schotanus MP, Yin Z, Pintea V, Hammock BD, Watsky MA (2012) Enhancement of vitamin D metabolites in the eye following vitamin D3 supplementation and UV-B irradiation. Curr Eye Res 37(10):871–878. https://doi.org/10.3109/02713683.2012.688235
Hertsenberg AJ, Funderburgh JL (2015) Stem Cells in the Cornea. Elsevier, Molecular Biology of Eye Disease, pp 25–41
Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E (2016) Microbial infections of the eye. Elsevier, The Eye, pp 462–485
DelMonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37(3):588–598. https://doi.org/10.1016/j.jcrs.2010.12.037
Reins RY, Hanlon SD, Magadi S, McDermott AM (2016) Effects of topically applied vitamin D during corneal wound healing. PLoS ONE 11(4):e0152889. https://doi.org/10.1371/journal.pone.0152889
Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: a global perspective. Bull World Health Organ 79(3):214–221
Wilson SL, El Haj AJ, Yang Y (2012) Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering. J Funct Biomater 3(3):642–687. https://doi.org/10.3390/jfb3030642
Yang C-H, Albietz J, Harkin DG, Kimlin MG, Schmid KL (2018) Impact of oral vitamin D supplementation on the ocular surface in people with dry eye and/or low serum vitamin D. Contact Lens Anterior Eye 41(1):69–76. https://doi.org/10.1016/j.clae.2017.09.007
Lv Y, Yao Q, Ma W, Liu H, Ji J, Li X (2016) Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol 16(1):116. https://doi.org/10.1186/s12886-016-0289-y
Jamali N, Wang S, Darjatmoko SR, Sorenson CM, Sheibani N (2017) Vitamin D receptor expression is essential during retinal vascular development and attenuation of neovascularization by 1, 25(OH)2D3. PLoS ONE 12(12):e0190131. https://doi.org/10.1371/journal.pone.0190131
Merrigan SL, Kennedy BN (2017) Vitamin D receptor agonists regulate ocular developmental angiogenesis and modulate expression of dre-miR-21 and VEGF: vitamin D regulates ocular angiogenesis, miR-21 and VEGF. Br J Pharmacol 174(16):2636–2651. https://doi.org/10.1111/bph.13875
Elizondo RA, Yin Z, Lu X, Watsky MA (2014) Effect of vitamin D receptor knockout on cornea epithelium wound healing and tight junctions. Invest Opthalmol Vis Sci 55(8):5245. https://doi.org/10.1167/iovs.13-13553
Suzuki T, Sano Y, Kinoshita S (2000) Effects of 1alpha,25-dihydroxyvitamin D3 on Langerhans cell migration and corneal neovascularization in mice. Invest Ophthalmol Vis Sci 41(1):154–158
Xue ML, Zhu H, Thakur A, Willcox M (2002) 1α,25-Dihydroxyvitamin D 3 inhibits pro-inflammatory cytokine and chemokine expression in human corneal epithelial cells colonized with Pseudomonas aeruginosa. Immunol Cell Biol 80(4):340–345. https://doi.org/10.1046/j.1440-1711.80.4august.1.x
Jabbehdari S, Yazdanpanah G, Kanu LN, Anwar KN, Shen X, Rabiee B, Putra I, Eslani M, Rosenblatt MI, Hematti P et al (2020) Reproducible derivation and expansion of corneal mesenchymal stromal cells for therapeutic applications. Trans Vis Sci Tech 9:26
Djalilian AR, Namavari A, Ito A, Balali S, Afshar A, Lavker RM, Yue BY (2008) Down-regulation of Notch signaling during corneal epithelial proliferation. Mol Vis 5(14):1041–1049
Nebbioso M, Buomprisco G, Pascarella A, pescosolido n (2017) modulatory effects of 1,25-dihydroxyvitamin D3 on eye disorders: a critical review. Crit Rev Food Sci Nutr 57(3):559–565
Reins RY, Baidouri H, McDermott AM (2015) Vitamin D activation and function in human corneal epithelial cells during TLR-induced inflammation. Invest Ophthalmol Vis Sci 56(13):7715–7727
Gurlek A, Pittelkow MR, Kumar R (2002) Modulation of growth factor/cytokine synthesis and signaling by 1α,25-Dihydroxyvitamin D3: implications in cell growth and differentiation. Endocr Rev 23(6):763–786. https://doi.org/10.1210/er.2001-0044
Hill NT, Zhang J, Leonard MK, Lee M, Shamma HN, Kadakia M (2015) 1α, 25-Dihydroxyvitamin D3 and the vitamin D receptor regulates ΔNp63α levels and keratinocyte proliferation. Cell Death Dis 6(6):e1781–e1781. https://doi.org/10.1038/cddis.2015.148
Itin PH, Pittelkow MR, Kumar R (1994) Effects of vitamin D metabolites on proliferation and differentiation of cultured human epidermal keratinocytes grown in serum-free or defined culture medium. Endocrinology 135(5):1793–1798. https://doi.org/10.1210/endo.135.5.7956903
Molinari C, Rizzi M, Squarzanti DF, Pittarella P, Vacca G, Renò F (2013) 1a,25-Dihydroxycholecalciferol (Vitamin D3) induces no-dependent endothelial cell proliferation and migration in a three-dimensional matrix. Cell Physiol Biochem 31(6):815–822. https://doi.org/10.1159/000350099
Matsumoto K, Hashimoto K, Nishida Y, Hashiro M, Yoshikawa K (1990) Growth-inhibitory effects of 1,25-dihydroxyvitamin D3 on normal human keratinocytes cultured in serum-free medium. Biochem Biophys Res Commun 166(2):916–923. https://doi.org/10.1016/0006-291X(90)90898-W
Oda Y, Uchida Y, Moradian S, Crumrine D, Elias PM, Bikle DD (2009) Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. J Invest Dermatol 129(6):1367–1378. https://doi.org/10.1038/jid.2008.380
Nazzal A, Tipton Da Karydis A, Slominski A, Stein SH (2016) Vitamin D stimulates epithelial cell proliferation and facilitates wound closure via a cathelicidin independent pathway in vitro. Periodontics Prosthodont. https://doi.org/10.21767/2471-3082.100013
Bukowiecki A, Hos D, Cursiefen C, Eming SA (2017) Wound-healing studies in cornea and skin: parallels, differences and opportunities. Int J Mol Sci 18(6):1257. https://doi.org/10.3390/ijms18061257
Kimura K, Morita Y, Orita T, Haruta J, Takeji Y, Sonoda K-H (2013) Protection of human corneal epithelial cells from TNF-α–induced disruption of barrier function by rebamipide. Invest Opthalmol Vis Sci 54(4):2752. https://doi.org/10.1167/iovs.12-11294
Yannariello-Brown J, Hallberg CK, Häberle H, Brysk MM, Jiang Z, Patel JA, Ernst PB, Trocme SD (1998) Cytokine modulation of human corneal epithelial cell ICAM-1 (CD54) expression. Exp Eye Res 67(4):383–393. https://doi.org/10.1006/exer.1998.0514
Iwata M (2003) Intercellular adhesion molecule-1 expression on human corneal epithelial outgrowth from limbal explant in culture. Br J Ophthalmol 87(2):203–207. https://doi.org/10.1136/bjo.87.2.203
Holick MF (2010) Vitamin D: extraskeletal Health. Endocrinol Metab Clin N Am 39:381–400. https://doi.org/10.1016/j.ecl.2010.02.016
Do JE, Kwon SY, Park S, Lee ES (2008) Effects pf vitmain D on expression of Toll-like receptors of monocytes from patients with Behçet’s disease. Rheumatology 47:840. https://doi.org/10.1093/rheumatology/ken109
McCormack WJ, Parker AE, O’Neill LA (2009) Toll-like receptors and NOD-like receptors in rheumatic diseases. Arthritis Res & Therapy 11:243–251. https://doi.org/10.1186/ar2729
Muzio M, Mantovani A (2000) Toll-like receptors. Microbes Infect 2:251–255. https://doi.org/10.1016/S1286-4579(00)00303-8
Sadeghi K, Wessner R, Laggner U, Ploder M, Tamandl D, Josef F et al (2006) Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular pattern. Eur J Immunol 36:361–379. https://doi.org/10.1002/eji.200425995
Ojaimi S, Skinner NA, Strauss BJ, Sundararajan V, Woolley I, Visvanathan K (2013) Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J Transl Med. https://doi.org/10.1186/1479-5876-11-176
Do JE, Kwon SY, Park S, Lee ES (2008) Effects pf vitmain D on expression of Toll-like receptors of monocytes from patients with Behçet’s disease. Rheumatology 47:840. https://doi.org/10.1093/rheumatology/ken109
Johnson AC, Li X, Pearlman E (2008) MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal Kinase. J Biol Chem 283(7):3988–3996. https://doi.org/10.1074/jbc.M707264200
Ueta M, Hamuro J, Kiyono H, Kinoshita S (2005) Triggering of TLR3 by polyI: C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 331(1):285–294. https://doi.org/10.1016/j.bbrc.2005.02.196
Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S (2000) Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 19(1):113–129. https://doi.org/10.1016/S1350-9462(99)00007-5
Arranz-Valsero I, Soriano-Romaní L, García-Posadas L, López-García A, Diebold Y (2014) IL-6 as a corneal wound healing mediator in an in vitro scratch assay. Exp Eye Res 125:183–192. https://doi.org/10.1016/j.exer.2014.06.012
Ebrahem Q, Minamoto A, Hoppe G, Anand-Apte B, Sears JE (2006) Triamcinolone acetonide inhibits IL-6– and VEGF-induced angiogenesis downstream of the IL-6 and VEGF receptors. Invest Opthalmol Vis Sci 47(11):4935. https://doi.org/10.1167/iovs.05-1651
Ebihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A (2011) Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest Opthalmol Vis Sci 52(12):8549. https://doi.org/10.1167/iovs.11-7956
Strieter RM, Kunkel SL, Elner VM, Martonyi CL, Koch AE, Polverini PJ, Elner SG (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284
Li Z, Burns A, Rumbaut R, Smith C (2008) Sex difference in corneal epithelial wound healing in mice. Invest Ophthalmol Vis Sci 49(13):e2403
Sel S, Trau S, Paulsen F, Kalinski T, Stangl GI, Nass N (2016) 1,25-dihydroxyvitamin D3 inhibits corneal wound healing in an ex-vivo mouse model. Graefes Arch Clin Exp Ophthalmol 254(4):717–724
Acknowledgements
This work was supported by R01 EY024349 (ARD), K12 EY021475(KBK); unrestricted grant to the department from Research to Prevent Blindness, and Eversight (providing both seed funding and human corneal research tissue). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
S.J., K.K.: conceptualization, final approval of manuscript; S.J, G.Y., E.C., N.A.: manuscript writing, collection and/or assembly of data, data analysis, data interpretation; S.J., G.Y., M.G., K.K., C.F., A.R.D.: writing—review and editing; A.R.D.: funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The authors indicated no potential conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jabbehdari, S., Yazdanpanah, G., Chen, E. et al. Dose-dependent therapeutic effects of topical 1,25 OH-vitamin D3 on corneal wound healing. Mol Biol Rep 48, 4083–4091 (2021). https://doi.org/10.1007/s11033-021-06418-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-021-06418-6


