Skip to main content
Log in

The investigation of glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glioblastoma multiform is a primary brain tumor derived from glial cells. The aim of this study is to investigate how glutamate metabolism is regulated by glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma and glial cell lines. The protein expression levels of GLT-1, total ubiquitin, protein kinase C (PKC) proteins involved in the GLT-1 degradation pathway were measured by the western blot technique. Additionally, in glial and glioblastoma cells, the level of glutamate accumulated in the medium and the lysates was measured with the glutamate assay. GLT-1 protein expression was increased significantly in glioblastoma cells. The expression levels of the PKC protein and total ubiquitin were found to be decreased in glioblastoma cells although not significantly. The glutamate accumulated in the medium and lysates of glioblastoma cells is reduced compared to glial cells. Further research regarding excitotoxicity in glioblastoma focusing on GLT-1 degradation or activation pathway may create new opportunities of drug and treatment development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2012) The definition of primary and secondary gliobalstoma. Clin Cancer Res 19(4):764–772

    Article  Google Scholar 

  2. Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105(2):287–295

    Article  CAS  Google Scholar 

  3. Sheldon AL, Gonzalez MI, Krizman-Genda EN, Susarla BTS, Robinson MB (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53(6–8):296–308

    Article  CAS  Google Scholar 

  4. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  5. Ezza HSA, Khadrawyb YA (2014) Glutamate excitotoxicity and neurodegeneration. J Mol Genet Med 8:4

    Google Scholar 

  6. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    CAS  PubMed  Google Scholar 

  7. Lin CLG, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4(13):1689–1700

    Article  CAS  Google Scholar 

  8. Karaca M, Frigerio F, Maechler P (2011) From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int 59:510–517

    Article  CAS  Google Scholar 

  9. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  Google Scholar 

  10. Magi S, Piccirillo S, Amoroso S, Lariccia V (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20(22):5674

    Article  CAS  Google Scholar 

  11. Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8(2):51–63

    Article  Google Scholar 

  12. Kanai Y, Smith CP, Hediger MA (1993) The elusive transporters with a high affinity for glutamate. Trends Neurosci 16:365–370

    Article  CAS  Google Scholar 

  13. Zhang Y, He X, Meng X, Wu X, Tong H, Zhang X, Qu S (2017) Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis 8:e2574

    Article  CAS  Google Scholar 

  14. Susarla BTS, Robinson MB (2008) Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester. Neurochem Int 52(4–5):709–722

    Article  CAS  Google Scholar 

  15. Peterson AR, Binder DK (2019) Post-translational regulation of GLT-1 in neurological diseases and its potential as an effective therapeutic target. Front Mol Neurosci 12:164

    Article  CAS  Google Scholar 

  16. Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. TIPS 33(9):494

    CAS  PubMed  Google Scholar 

  17. Shih J, Liu L, Mason A, Higashimori H, Donmez G (2014) Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem 131(5):573–581

    Article  CAS  Google Scholar 

  18. Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5):941–954

    Article  CAS  Google Scholar 

  19. Dönmez-Yalçın G, Çolak M (2020) SIRT4 prevents excitotoxicity via modulating glutamate metabolism in glioma cells. Hum Exp Toxicol 39(7):938–947

    Article  Google Scholar 

  20. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    Article  CAS  Google Scholar 

  21. Petryszak R, Keays M, Tang AY et al (2016) Expression atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44(D1):D746–D752

    Article  CAS  Google Scholar 

  22. Jaworski S, Sawosz E, Grodzik M, Kutwin M, Wierzbicki M, Włodyga K, Jasik A, Michał Reichert M, Chwalibog A (2013) Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane. Bull Vet Inst Pulawy 57:593–598

    Article  CAS  Google Scholar 

  23. Motaln H, Koren A, Gruden K, Ramšak Z, Schichor LTT (2015) Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance. Oncotarget 6(38):40998–41017

    Article  Google Scholar 

  24. Poteet E, Choudhury GR, Winters A, Li W, Ryou MG, Liu R, Tang L, Ghorpade A, Wen Y, Yuan F, Keir ST, Yan H, Bigner DD, Simpkins JW, Yang SH (2013) Reversing the warburg effect as a treatment for glioblastoma. JBC 288(13):9153–9164

    Article  CAS  Google Scholar 

  25. Diao W, Tong X, Yang C, Zhang F, Bao C, Chen H, Liu L, Li M, Ye F, Fan Q, Wang J, Yang ZCO (2019) Behaviors of glioblastoma cells in in vitro microenvironments. Sci Rep 9:85

    Article  Google Scholar 

  26. Tanaka K, Sasayama T, Nagashima H et al (2021) Glioma cells require one-carbon metabolism to survive glutamine starvation. Acta Neuropathol Commun 9:16

    Article  CAS  Google Scholar 

  27. Dönmez-Yalçın G, Oktay E, Yalçın A, Diniz G, KahramanSolakoglu D, Senoglu M (2020) Glutamate transporter 1 expression in human glioblastomas. JBUON 25(4):2051–2058

    PubMed  Google Scholar 

  28. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW (2017) Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3(3):169–180

    Article  CAS  Google Scholar 

  29. Oraiopoulou ME, Tzamali E, Tzedakis G, Vakis A, Papamatheakis J, Sakkalis V (2017) In vitro/in silico study on the role of doubling time heterogeneity among primary glioblastoma cell lines. BioMed Res Int. https://doi.org/10.1155/2017/8569328

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jane EP, Premkumar DR, Cavaleri JM, Sutera PA, Rajasekar T, Pollack IF (2016) Dinaciclib, a cyclin-dependent kinase inhibitor promotes proteasomal degradation of Mcl-1 and enhances ABT-737–mediated cell death in malignant human glioma cell lines. J Pharmacol Exp Ther 356:354–365

    Article  CAS  Google Scholar 

  31. Sonoda Y, Ozawa T, Hirose Y, Aldape KD, McMahon M, Berger MS, Pieper RO (2001) Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956–4960

    CAS  PubMed  Google Scholar 

  32. Garg R, Benedetti LG, Abera MB, Wang HB, Abba M, Kazanietz MG (2014) Protein kinase C and cancer: what we know and what we do not. Oncogene 33(45):5225–5237

    Article  CAS  Google Scholar 

  33. do Carmo A, Balça-Silva J, Matias D, Lopes MC (2013) PKC signaling in glioblastoma. Cancer Biol Ther 14(4):287–294

    Article  Google Scholar 

  34. Marengo B, De Ciucis C, Ricciarelli R, Pronzato MA, Marinari UM, Domenicotti C (2011) Protein kinase C: an attractive target for cancer therapy. Cancers 3(1):531–567

    Article  CAS  Google Scholar 

  35. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555

    Article  CAS  Google Scholar 

  36. Lo M, Ling V, Wang Y et al (2008) The xc cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer 99:464–472

    Article  CAS  Google Scholar 

  37. Folch J, Busquets O, Ettcheto M et al (2018) Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis 62(3):1223–1240

    Article  CAS  Google Scholar 

  38. Bissaro M, Moro S (2019) Rethinking to riluzole mechanism of action: the molecular link among protein kinase CK1δ activity, TDP-43 phosphorylation, and amyotrophic lateral sclerosis pharmacological treatment. Neural Regen Res 14:2083–2085

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Aydın Adnan Menderes University Scientific Research Projects Unit (Project number: TPF-19032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Donmez Yalcin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdelen, D.N., Akkulak, A. & Donmez Yalcin, G. The investigation of glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma cells. Mol Biol Rep 48, 3495–3502 (2021). https://doi.org/10.1007/s11033-021-06407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06407-9

Keywords

Navigation