Skip to main content
Log in

Expression profiles of Natural Killer Group 2D Ligands (NGK2DLs) in colorectal carcinoma and changes in response to chemotherapeutic agents

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. Natural Killer Group 2D Receptor (NKG2D) and their ligands (NKG2DLs) play crucial roles in natural killer (NK) cell-mediated cytotoxicity. Tumorigeneses cause increased NKG2DLs expression on tumor cell surfaces, thereby these cells individually eliminated by NK cells. However, CRC cells can reduce their NKG2DL expression to escape from NK-mediated immune surveillance which is associated with poor prognosis. Therefore, previous studies suggest that up-regulation of NKG2DLs can contribute to promising NK cell-mediated immunotherapy strategies. We aimed to analyze NKG2DLs expression profiles in response to chemotherapeutic drugs and increased MHC class I polypeptide-related sequence A (MICA) expression, which is related to favorable prognosis in CRC, using low doses of bortezomib and epirubicin combination without causing direct cytotoxicity. Results showed that MICA expression  sligthly increased following drug treatment in the CRC cells but not for the normal cells. Also, we enriched our study with Gene Expression Omnibus (GEO) datasets including expression profiles of various NKG2DLs using in silico analyses. Accordingly, NKG2DL expression in CRC was screened in proportion to other cancers, histologic subtypes, TNM stages and metastatic samples to compare with our data. Overall, the analyzed data showed that NKG2DLs demonstrate different expression profiles in response to chemotherapeutic agents and a combination of low-dose bortezomib and epirubicin slightly increased MICA mRNA expression in CRC cell lines. However, performing further analysis of the combination therapy for MICA protein expression and studying its interaction with NK cells will make the results more meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the microarray data and probe ids can be found in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16:713–732. https://doi.org/10.1038/s41575-019-0189-8

    Article  PubMed  Google Scholar 

  2. Aran V, Victorino AP, Thuler LC, Ferreira CG (2016) Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer 15:195–203. https://doi.org/10.1016/j.clcc.2016.02.008

    Article  PubMed  Google Scholar 

  3. Duan S, Guo W, Xu Z et al (2019) Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 18:29. https://doi.org/10.1186/s12943-019-0956-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu H et al (2019) Role of NKG2D and its ligands in cancer immunotherapy. Am J Cancer Res 15(22):6993–7002

    Google Scholar 

  5. McGilvray RW, Eagle RA, Watson NFS et al (2009) NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 15:6993–7002. https://doi.org/10.1158/1078-0432.CCR-09-0991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dhar P, Wu JD (2018) NKG2D and its ligands in cancer. Curr Opin Immunol 51:55–61. https://doi.org/10.1016/j.coi.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waldhauer I, Steinle A (2006) Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66:2520–2526. https://doi.org/10.1158/0008-5472.CAN-05-2520

    Article  CAS  PubMed  Google Scholar 

  8. Cvek B (2012) Proteasome inhibitors. Progress in molecular biology and translational science. Elsevier, Amsterdam, pp 161–226. https://doi.org/10.1016/B978-0-12-397863-9.00005-5

    Book  Google Scholar 

  9. Roccaro A, Vacca A, Ribatti D (2006) Bortezomib in the treatment of cancer. Recent Pat Anticancer Drug Discov 1:397–403. https://doi.org/10.2174/157489206778776925

    Article  CAS  PubMed  Google Scholar 

  10. Su L, Suyila Q, Yang L et al (2017) Bax is involved in the anticancer activity of Velcade in colorectal cancer. Exp Ther Med 14:3179–3183. https://doi.org/10.3892/etm.2017.4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cacan E, Spring A, Kumari A et al (2015) Combination treatment with sublethal ionizing radiation and the proteasome inhibitor, bortezomib, enhances death-receptor mediated apoptosis and anti-tumor immune attack. Int J Mol Sci 16:30405–30421. https://doi.org/10.3390/ijms161226238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ormrod D, Holm K, Goa K, Spencer C (1999) Epirubicin. Drugs Aging 15:389–416. https://doi.org/10.2165/00002512-199915050-00006

    Article  CAS  PubMed  Google Scholar 

  13. Cacan E, Ozmen ZC (2020) Regulation of Fas in response to bortezomib and epirubicin in colorectal cancer cells. J Chemother 32:193–201. https://doi.org/10.1080/1120009X.2020.1740389

    Article  CAS  PubMed  Google Scholar 

  14. Khasraw M, Bell R, Dang C (2012) Epirubicin: Is it like doxorubicin in breast cancer? A clinical review. The Breast 21:142–149. https://doi.org/10.1016/j.breast.2011.12.012

    Article  PubMed  Google Scholar 

  15. Wu J, Xue X, Zhang B et al (2016) Enhanced antitumor activity and attenuated cardiotoxicity of epirubicin combined with paeonol against breast cancer. Tumor Biol 37:12301–12313. https://doi.org/10.1007/s13277-016-5088-9

    Article  CAS  Google Scholar 

  16. Johdi NA, Sukor NF (2020) Colorectal cancer immunotherapy: options and strategies. Front Immunol 11:1624. https://doi.org/10.3389/fimmu.2020.01624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3(5):436–443. https://doi.org/10.1158/2326-6066.CIR-15-0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, Galluzzi L, Kroemer G, Zitvogel L (2013) Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 24(4):311–318. https://doi.org/10.1016/j.cytogfr.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Rufo N, Garg AD, Agostinis P (2017) The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends in cancer 3(9):643–658. https://doi.org/10.1016/j.trecan.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Radogna F, Diederich M (2018) Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochem Pharmacol 153:12–23. https://doi.org/10.1016/j.bcp.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  21. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109(11):4839–4845. https://doi.org/10.1182/blood-2006-10-054221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang CL, Hsu YT, Wu CC, Yang YC, Wang C, Wu TC, Hung CF (2012) Immune mechanism of the antitumor effects generated by bortezomib. J Immunol (Baltimore) 189(6):3209–3220. https://doi.org/10.4049/jimmunol.1103826

    Article  CAS  Google Scholar 

  23. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foà R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113(15):3503–3511. https://doi.org/10.1182/blood-2008-08-173914

    Article  CAS  PubMed  Google Scholar 

  24. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  25. Rstudio Team (2019) Rstudio: Integrated Development for R. Rstudio, Inc., Boston, MA. https://www.rstudio.com/

  26. Huber W, Carey VJ, Gentleman R et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12:115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis S, Meltzer PS (2007) GEOquery: a bridge between the gene expression omnibus (GEO) and BIOCOnductor. Bioinformatics 23:1846–1847. https://doi.org/10.1093/bioinformatics/btm254

    Article  CAS  PubMed  Google Scholar 

  28. Cacan E (2016) Histone deacetlyase-1-mediated suppression of FAS in chemoresistant ovarian cancer cells. Anticancer Res 6:2819–2826

    Google Scholar 

  29. Kassambara A (2020) ggpubr ‘ggpplot’ Based Publication Ready Plots. R package version 0.3.0. https://CRAN.R-project.org/package=ggpubr

  30. Wickham H et al (2019) Welcome to the tidyverse. Journal of Open Source Software 4:1686

    Article  Google Scholar 

  31. Hope RM (2013) Rmisc: Rmisc: Ryan Miscellaneous. R package version 1.5. https://CRAN.R-project.org/package=Rmisc

  32. Karthik R, Hadley W. wesanderson: A Wes Anderson Palette Generator. 2018. R package version 0.3.6. https://CRAN.R-project.org/package=wesanderson

  33. Wickham H, Bryan J. readxl: Read Excel Files. 2019. R package version 1.3.1. https://CRAN.R-project.org/package=readxl

  34. Curley E (2005) Expression Project for Oncology (expO). Arrayexpress-repository, V1. https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD/2109

  35. Qi L, Ding Y (2018) Screening of differentiation-specific molecular biomarkers for colon cancer. Cell Physiol Biochem 46:2543–2550. https://doi.org/10.1159/000489660

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Yi CH, Hu YT et al (2016) TNM staging of colorectal cancer should be reconsidered according to weighting of the T stage. Medicine (United States). https://doi.org/10.1097/MD.0000000000002711

    Article  PubMed  PubMed Central  Google Scholar 

  37. Piard F et al (2013) Gene expression Classification of Colon Cancer defines six molecular subtypes with distinct clinical, molecular and survival characteristics [Expression]. Arrayexpress-repository, V1. https://www.ebi.ac.uk/arrayexpress/expreiments/E-GEOD-39582

  38. Marisa L, de Reyniès A, Duval A et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453. https://doi.org/10.1371/journal.pmed.1001453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Freeman TJ, Smith JJ, Chen X et al (2012) Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology 142:562-571.e2. https://doi.org/10.1053/j.gastro.2011.11.026

    Article  CAS  PubMed  Google Scholar 

  40. Smith JJ, Deane NG, Wu F, Merchant NB et al (2010) Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138(3):958–968. https://doi.org/10.1053/j.gastro.2011.11.026

    Article  CAS  PubMed  Google Scholar 

  41. Barresi V, Bonetti LR, Leni A et al (2015) Histological grading in colorectal cancer: new insights and perspectives. Histol Histopathol 30:1059–1067. https://doi.org/10.14670/HH-11-633

    Article  CAS  PubMed  Google Scholar 

  42. Bujanda L (2010) Malignant colorectal polyps. World J Gastroenterol 16:3103. https://doi.org/10.3748/wjg.v16.i25.3103

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sheffer M, Bacolod MD, Zuk O et al (2009) Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA 106:7131–7136. https://doi.org/10.1073/pnas.0902232106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Getz G, Gal H, Kela I, Notterman DA et al (2003) Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data. Bioinformatics 19(9):1079–1089. https://doi.org/10.1093/bioinformatics/btf876

    Article  CAS  PubMed  Google Scholar 

  45. Tang M, Acheampong DO, Wang Y et al (2016) Tumoral NKG2D alters cell cycle of acute myeloid leukemic cells and reduces NK cell-mediated immune surveillance. Immunol Res 64:754–764. https://doi.org/10.1007/s12026-015-8769-3

    Article  CAS  PubMed  Google Scholar 

  46. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19:200–218. https://doi.org/10.1038/s41573-019-0052-1

    Article  CAS  PubMed  Google Scholar 

  47. Spear P et al (2013) NKG2D ligands as therapeutic targets. Cancer Immun 13:8

    PubMed  PubMed Central  Google Scholar 

  48. Watson NFS, Spendlove I, Madjd Z et al (2006) Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445–1452. https://doi.org/10.1002/ijc.21510

    Article  CAS  PubMed  Google Scholar 

  49. Shanker A, Pellom ST, Dudimah DF et al (2015) Bortezomib improves adoptive T-cell therapy by sensitizing cancer cells to FasL cytotoxicity. Cancer Res 75:5260–5272. https://doi.org/10.1158/0008-5472.CAN-15-0794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ames E, Hallett WHD, Murphy WJ (2009) Sensitization of human breast cancer cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin Exp Immunol 155:504–513. https://doi.org/10.1111/j.1365-2249.2008.03818.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors feel thankful to Caglar Berkel for his contributions and Tokat Gaziosmanpasa University Scientific Research Projects Office (BAP) for funding.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research was supported by Tokat Gaziosmanpasa University, Scientific Research Projects, No: 2019/15.

Author information

Authors and Affiliations

Authors

Contributions

EC: Supervising, planning methodology and constructing hypothesis for research and manuscript. BK, EY and EC: Execution of the experiments, data management, analysis and constructing of the body of the manuscript.

Corresponding author

Correspondence to Ercan Cacan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with respect to the search, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucuk, B., Yilmaz, E. & Cacan, E. Expression profiles of Natural Killer Group 2D Ligands (NGK2DLs) in colorectal carcinoma and changes in response to chemotherapeutic agents. Mol Biol Rep 48, 3999–4008 (2021). https://doi.org/10.1007/s11033-021-06404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06404-y

Keywords

Navigation