Skip to main content

Advertisement

Log in

Effect of methylenetetrahydrofolate reductase gene polymorphisms and oxidative stress in silent brain infarction

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ischemic infarctions occur under the influence of genetic and environmental factors. In our study, the role of ischemia-modified albumin and thiol balance, which are new markers in determining oxidative damage together with MTHFR gene polymorphisms and homocysteine levels, in the development of SBI was investigated. White matter lesions in the magnetic resonance imaging (MRI) results of the patients were evaluated according to the Fazekas scale and divided into groups (Grade 0, 1, 2, and 3). Homocysteine, folate, B12, IMA, total thiol, and native thiol were measured by biochemical methods. The polymorphisms in MTHFR genes were investigated by the RT-PCR method. According to our results, a significant difference was found between the groups in age, homocysteine, folate, IMA, total thiol, and native thiol parameters (p < 0.05). When we compared the groups in terms of genotypes of the C677T gene, we found a significant difference in TT genotype between grades 0/3 and 1/3 (p < 0.05). We determined that homocysteine and IMA levels increased and folate levels decreased in CC/TT and CT/TT genotypes in the C677T gene (p < 0.05). Considering our results, the observation of homocysteine and IMA changes at the genotype level of the MTHFR C677T gene and between the groups, and the deterioration of thiol balance between the groups suggested that these markers can be used in the diagnosis of silent brain infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Leeuw F, de Groot JC, Achten E, Oudkerk M, Ramos L, Heijboer R, Hofman A, Jolles J, Van Gijn J, Breteler M (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70(1):9–14

    PubMed  PubMed Central  Google Scholar 

  2. Park H, Jo J, Cheong J, Chang H, Lee H-S, Lee S, Suk S-H (2014) Prevalence and risk factors of cerebral white matter changes and silent infarcts on brain computed tomography scans among community-dwelling healthy adults: The present project. Neurol Asia 19 (4)

  3. Kobayashi S, Okada K, Koide H, Bokura H, Yamaguchi S (1997) Subcortical silent brain infarction as a risk factor for clinical stroke. Stroke 28(10):1932–1939

    CAS  PubMed  Google Scholar 

  4. Bernick C, Kuller L, Dulberg C, Longstreth W Jr, Manolio T, Beauchamp N, Price T (2001) Silent MRI infarcts and the risk of future stroke: the cardiovascular health study. Neurology 57(7):1222–1229

    CAS  PubMed  Google Scholar 

  5. Park H, Park HY, Yun KH, Suk SH (2019) The clinical significance of aortic calcification in chest radiography in community-dwelling, healthy adults: the present project. Neurol Asia 24(1):1–7

    CAS  Google Scholar 

  6. Bryan RN, Wells SW, Miller TJ, Elster AD, Jungreis CA, Poirier VC, Lind BK, Manolio TA (1997) Infarctlike lesions in the brain: prevalence and anatomic characteristics at MR imaging of the elderly–data from the Cardiovascular Health Study. Radiology 202(1):47–54

    CAS  PubMed  Google Scholar 

  7. Han F, Zhai F-F, Wang Q, Zhou L-X, Ni J, Yao M, Li M-L, Zhang S-Y, Cui L-Y, Jin Z-Y (2018) Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample. J Stroke 20(2):239

    PubMed  PubMed Central  Google Scholar 

  8. Gupta A, Giambrone AE, Gialdini G, Finn C, Delgado D, Gutierrez J, Wright C, Beiser AS, Seshadri S, Pandya A (2016) Silent brain infarction and risk of future stroke: a systematic review and meta-analysis. Stroke 47(3):719–725

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ricci S, Celani M, La Rosa F, Righetti E, Duca E, Caputo N (1993) Silent brain infarctions in patients with first-ever stroke. A community-based study in Umbria Italy. Stroke 24(5):647–651

    CAS  PubMed  Google Scholar 

  10. Fanning JP, Wong AA, Fraser JF (2014) The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med 12(1):119

    PubMed  PubMed Central  Google Scholar 

  11. Gioia LC, Tollard É, Dubuc V, Lanthier S, Deschaintre Y, Chagnon M, Poppe AY (2012) Silent ischemic lesions in young adults with first stroke are associated with recurrent stroke. Neurology 79(12):1208–1214

    PubMed  Google Scholar 

  12. Kohara K, Fujisawa M, Ando F, Tabara Y, Niino N, Miki T, Shimokata H (2003) MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: the NILS-LSA Study. Stroke 34(5):1130–1135

    PubMed  Google Scholar 

  13. Lopaciuk S, Bykowska K, Kwiecinski H, Mickielewicz A, Czlcankawska A, Mendel T, Kuczynska-Zardzewialy A, Szelagowska D, Windyga J, Schröder W (2001) Factor V Leiden, prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase C677T genotype in young adults with ischemic stroke. Clin Appl Thromb Hemost 7(4):346–350

    CAS  PubMed  Google Scholar 

  14. Sazci A, Ergul E, Tuncer N, Akpinar G, Kara I (2006) Methylenetetrahydrofolate reductase gene polymorphisms are associated with ischemic and hemorrhagic stroke: dual effect of MTHFR polymorphisms C677T and A1298C. Brain Res Bull 71(1–3):45–50

    CAS  PubMed  Google Scholar 

  15. Li M, Fu B, Dong W (2018) Correlations between plasma homocysteine and MTHFR gene polymorphism and white matter lesions. Folia Neuropathol 56:301–307

    PubMed  Google Scholar 

  16. Vijayan M, Chinniah R, Ravi PM, Sivanadham R, Joseph AKM, Vellaiappan NA, Krishnan JI, Karuppiah B (2016) MTHFR (C677T) CT genotype and CT-apoE3/3 genotypic combination predisposes the risk of ischemic stroke. Gene 591(2):465–470

    CAS  PubMed  Google Scholar 

  17. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64(3):169–172

    CAS  PubMed  Google Scholar 

  18. Bailey LB, Duhaney RL, Maneval DR, Kauwell GP, Quinlivan EP, Davis SR, Cuadras A, Hutson AD, Gregory JF III (2002) Vitamin B-12 status is inversely associated with plasma homocysteine in young women with C677T and/or A1298C methylenetetrahydrofolate reductase polymorphisms. J Nutr 132(7):1872–1878

    CAS  PubMed  Google Scholar 

  19. Frosst P, Blom H, Milos R, Goyette P, Sheppard CA, Matthews R, Boers G, Den Heijer M, Kluijtmans L, Van Den Heuve L (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113

    CAS  PubMed  Google Scholar 

  20. Dave H, Dalal P, Patel P, Desai R (2019) A rare case of hyperhomocysteinemia-associated thrombotic stroke in the pediatric age group. Cureus. https://doi.org/10.7759/cureus.4490

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weiss N, Keller C, Hoffmann U, Loscalzo J (2002) Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 7(3):227–239

    PubMed  Google Scholar 

  22. Rady PL, Tyring SK, Hudnall SD, Vargas T, Kellner LH, Nitowsky H, Matalon RK (1999) Methylenetetrahydrofolate reductase (MTHFR): the incidence of mutations C677T and A1298C in the Ashkenazi Jewish population. Am J Med Genet 86(4):380–384

    CAS  PubMed  Google Scholar 

  23. Paradkar MU, Padate B, Shah SA, Vora H, Ashavaid TF (2020) Association of Genetic variants with hyperhomocysteinemia in indian patients with thrombosis. Indian J Clin Biochem 35(4):465–473

    CAS  PubMed  Google Scholar 

  24. Loscalzo J (1996) The oxidant stress of hyperhomocyst (e) inemia. J Clin Investig 98(1):5–7

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sbarouni E, Georgiadou P, Voudris V (2011) Ischemia modified albumin changes–review and clinical implications. Clin Chem Lab Med (CCLM) 49(2):177–184

    CAS  Google Scholar 

  26. Gaze DC (2009) Ischemia modified albumin: a novel biomarker for the detection of cardiac ischemia. Drug Metab Pharmacokinet 24(4):333–341

    CAS  PubMed  Google Scholar 

  27. Jena I, Nayak SR, Behera S, Singh B, Ray S, Jena D, Singh S, Sahoo SK (2017) Evaluation of ischemia-modified albumin, oxidative stress, and antioxidant status in acute ischemic stroke patients. J Nat Sci Biol Med 8(1):110

    PubMed  PubMed Central  Google Scholar 

  28. Nepal M, Jaisawal S, Guragain M, Kafle P, Mukkera S, Ghimire RK, Simmonds B, Harris UM, Berger S (2017) Ischemic modified albumin (IMA) as a novel marker for ischemic heart disease and surrogate marker for other high oxidative-ischemic conditions. J Cardiovasc Dis Res 8(4):112–116

    Google Scholar 

  29. Menon B, Ramalingam K, Krishna V (2018) Study of ischemia modified albumin as a biomarker in acute ischaemic stroke. Ann Neurosci 25:187–190

    PubMed  PubMed Central  Google Scholar 

  30. Gunduz A, Turedi S, Mentese A, Altunayoglu V, Turan I, Karahan SC, Topbas M, Aydin M, Eraydin I, Akcan B (2008) Ischemia-modified albumin levels in cerebrovascular accidents. Am J Emerg Med 26(8):874–878

    PubMed  Google Scholar 

  31. Kumar PA, SuBramanian K (2016) The role of ischemia modified albumin as a biomarker in patients with chronic liver disease. J Clin Diagnostic Res JCDR 10(3):BC09

    CAS  Google Scholar 

  32. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med 48(6):749–762

    CAS  Google Scholar 

  33. Yadav SK, Adhikary B, Chand S, Maity B, Bandyopadhyay SK, Chattopadhyay S (2012) Molecular mechanism of indomethacin-induced gastropathy. Free Radical Biol Med 52(7):1175–1187

    CAS  Google Scholar 

  34. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AG, Butterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162

    CAS  PubMed  Google Scholar 

  35. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radical Biol Med 62:13–25

    CAS  Google Scholar 

  36. Steele ML, Fuller S, Maczurek AE, Kersaitis C, Ooi L, Münch G (2013) Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells. Cell Mol Neurobiol 33(1):19–30

    CAS  PubMed  Google Scholar 

  37. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47(18):326–332

    CAS  PubMed  Google Scholar 

  38. Tsai H-H, Kim JS, Jouvent E, Gurol ME (2018) Updates on prevention of hemorrhagic and lacunar strokes. Journal of stroke 20(2):167

    PubMed  PubMed Central  Google Scholar 

  39. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM (2010) Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 41(3):450–454

    PubMed  Google Scholar 

  40. Wahlund L-O, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Adèr H, Leys D, Pantoni L (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32(6):1318–1322

    CAS  PubMed  Google Scholar 

  41. Giele JL, Witkamp TD, Mali WP, van der Graaf Y (2004) Silent brain infarcts in patients with manifest vascular disease. Stroke 35(3):742–746

    PubMed  Google Scholar 

  42. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 149(2):351–356

    CAS  Google Scholar 

  43. Bar–Or D, Lau E, Winkler JV (2000) A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—a preliminary report. J Emerg Med 19(4):311–315

    PubMed  Google Scholar 

  44. Prabhakaran S, Wright CB, Yoshita M, Delapaz R, Brown T, DeCarli C, Sacco RL (2008) Prevalence and determinants of subclinical brain infarction: the Northern Manhattan Study. Neurology 70(6):425–430

    CAS  PubMed  Google Scholar 

  45. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348(13):1215–1222

    PubMed  Google Scholar 

  46. Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P (2010) Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PLoS One 5(2):e9136

    PubMed  PubMed Central  Google Scholar 

  47. Nan G, Cui M, Liu S (2006) Relationship between independent risk factor of ischemic cerebrovascular disease in youth and genic mutation of methylene tetrahydrofolate reductase. Chin J Tissue Eng Res 10(4):184–186

    CAS  Google Scholar 

  48. Fekih-Mrissa N, Mrad M, Klai S, Mansour M, Nsiri B, Gritli N, Mrissa R (2013) Methylenetetrahydrofolate reductase (C677T and A1298C) polymorphisms, hyperhomocysteinemia, and ischemic stroke in Tunisian patients. J Stroke Cerebrovasc Dis 22(4):465–469

    PubMed  Google Scholar 

  49. Ivica N, Pintarić I, Titlić M (2014) MTHFR C677T and prothrombin G20210A mutations in a woman from Dalmatia with silent brain infarction. Acta Clinica Croatica 53(3):355–358

    PubMed  Google Scholar 

  50. Chang G, Kuai Z, Wang J, Wu J, Xu K, Yuan Y, Hu Y (2019) The association of MTHFR C677T variant with increased risk of ischemic stroke in the elderly population: a meta-analysis of observational studies. BMC Geriatr 19(1):1–7

    Google Scholar 

  51. Li M, Fu B, Dong W (2018) Correlations between plasma homocysteine and MTHFR gene polymorphism and white matter lesions. Folia Neuropathol 56(4):301–307

    PubMed  Google Scholar 

  52. Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S (2005) Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet 50(12):655–663

    CAS  PubMed  Google Scholar 

  53. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, Mendel M, Kidron M, Bar-On H (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129(9):1656–1661

    CAS  PubMed  Google Scholar 

  54. Lupi-Herrera E, Soto-López ME, Lugo-Dimas AdJ, Núñez-Martínez ME, Gamboa R, Huesca-Gómez C, Sierra-Galán LM, Guarner-Lans V (2019) Polymorphisms C677T and A1298C of MTHFR gene: homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin Appl Thromb Hemost 25:1076029618780344

    CAS  PubMed  Google Scholar 

  55. Amani S, Mirzajani E, Kassaee SM, Mahmoudi M, Mirbolouk F (2020) The association of methylene tetrahydrofolate reductase (MTHFR) A1298C gene polymorphism, homocysteine, vitamin B12, and folate with coronary artery disease (CAD) in the north of Iran. Turkish Journal of Biochemistry 1 (ahead-of-print)

  56. Kim N, Choi B, Jung W, Choi Y, Choi K (2003) Hyperhomocysteinemia as an independent risk factor for silent brain infarction. Neurology 61(11):1595–1599

    CAS  PubMed  Google Scholar 

  57. Ma T, Sun X-H, Yao S, Chen Z-K, Zhang J-F, Xu W, Jiang X-Y, Wang X-F (2020) Genetic variants of homocysteine metabolism, homocysteine, and frailty-rugao longevity and ageing study. J Nutr Health Aging 24(2):198–204

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the design of the study, collection of samples, and analysis and interpretation of data.

Corresponding author

Correspondence to Muhammet Yusuf Tepebaşı.

Ethics declarations

Conflict of interest

Dr. Pınar ASLAN KOŞAR and the co-authors have no conflicts of interest to declare in association with this study.

Ethical approval

This study was performed in accordance with Declaration of Helsinki ethics guidelines, and informed consent was obtained from each of its participants. Protocol and informed consent forms was approved by Isparta Süleyman Demirel University Medical Faculty Ethics Committee (Dated:27 February 2020, No: 42423).

Informed consent

Written informed consent was obtained from all patients prior to their participation in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan Koşar, P., Tepebaşı, M.Y., Şengeze, N. et al. Effect of methylenetetrahydrofolate reductase gene polymorphisms and oxidative stress in silent brain infarction. Mol Biol Rep 48, 3955–3962 (2021). https://doi.org/10.1007/s11033-021-06395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06395-w

Keywords

Navigation