Skip to main content

Advertisement

Log in

Dermal fibroblast cells interactions with single and triple bacterial-species biofilms

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polymicrobial biofilm leads to wound healing delay. We set up an in vitro co-culture model of single- and triple-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis with dermal fibroblast to assess the fibroblast response against to the different biofilms. Scratch and viability assays and biofilm cell quantifications were performed by WST-1, CLSM and plating method, respectively. Quorum sensing-related gene expression levels in P. aeruginosa and E. faecalis were analysed by reverse-transcriptase PCR. The immune responses of cells against S. aureus, P. aeruginosa and E. faecalis biofilms were measured by cytokine and matrix metalloproteinase analyzes. The influence of biofilm soluble factors on fibroblasts was also determined. After 24 h, triple-species biofilm cells caused the removal of the fibroblasts from the surfaces indicating the negative synergistic effect of three species. After co-cultures, twenty-five cytokines were significantly increased in fibroblast cells compared to control. Compared to other strains, the most important cytokine, chemokine and growth factors increased was observed in P. aeruginosa co-cultures with fibroblast. While the expressions of fsrB and gelE genes were significantly upregulated in E. faecalis biofilm cells cultured with fibroblast cells, no significant difference was observed in P. aeruginosa. The wound healing and cell growth of fibroblasts were disrupted more aggressively in the presence of P. aeruginosa and triple-species biofilm cells. P. aeruginosa generally induced a stronger immune response in the fibroblasts than E. faecalis and S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brackman G, Coenye T (2016) In vitro and in vivo biofilm wound models and their application. Adv Exp Med Biol 897:15–32. https://doi.org/10.1007/5584_2015_5002

    Article  CAS  PubMed  Google Scholar 

  2. Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19(2):45–53. https://doi.org/10.12968/jowc.2010.19.2.46966

    Article  CAS  PubMed  Google Scholar 

  3. Loffler M, Zieker D, Weinreich J, Lob S, Konigsrainer I, Symons S, Buhler S, Konigsrainer A, Northoff H, Beckert S (2011) Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings. Diabet Med 28(2):175–178. https://doi.org/10.1111/j.1464-5491.2010.03123.x

    Article  CAS  PubMed  Google Scholar 

  4. Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW (2002) Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects. Appl Environ Microb 68(4):1864–1871. https://doi.org/10.1128/Aem.68.4.1864-1871.2002

    Article  CAS  Google Scholar 

  5. Scalise A, Bianchi A, Tartaglione C, Bolletta E, Pierangeli M, Torresetti M, Marazzi M, Di Benedetto G (2015) Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors. Semin Vasc Surg 28(3–4):151–159. https://doi.org/10.1053/j.semvascsurg.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6(11):e27317. https://doi.org/10.1371/journal.pone.0027317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME (2011) Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79(4):1789–1796. https://doi.org/10.1128/IAI.01386-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao G, Usui ML, Lippman SI, James GA, Stewart PS, Fleckman P, Olerud JE (2013) Biofilms and inflammation in chronic wounds. Adv Wound Care (New Rochelle) 2(7):389–399. https://doi.org/10.1089/wound.2012.0381

    Article  Google Scholar 

  9. Daeschlein G (2013) Antimicrobial and antiseptic strategies in wound management. Int Wound J 10(Suppl 1):9–14. https://doi.org/10.1111/iwj.12175

    Article  PubMed  Google Scholar 

  10. Burmolle M, Ren D, Bjarnsholt T, Sorensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91. https://doi.org/10.1016/j.tim.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  11. Armbruster CE, Smith SN, Johnson AO, DeOrnellas V, Eaton KA, Yep A, Mody L, Wu WS, Mobley HLT (2017) The pathogenic potential of proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infect Immun. https://doi.org/10.1128/IAI.00808-16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Galvan EM, Mateyca C, Ielpi L (2016) Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria. Biofouling 32(9):1067–1077. https://doi.org/10.1080/08927014.2016.1231300

    Article  CAS  PubMed  Google Scholar 

  13. Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microb 72(6):3916–3923. https://doi.org/10.1128/Aem.03022-05

    Article  Google Scholar 

  14. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8(7):471–480. https://doi.org/10.1038/nrmicro2381

    Article  CAS  PubMed  Google Scholar 

  15. Seth AK, Geringer MR, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2012) Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit-ear model. J Am Coll Surg 215(3):388–399. https://doi.org/10.1016/j.jamcollsurg.2012.05.028

    Article  PubMed  Google Scholar 

  16. Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Hoiby N, Jensen PO (2017) Biofilms and host response—helpful or harmful. APMIS 125(4):320–338. https://doi.org/10.1111/apm.12674

    Article  PubMed  Google Scholar 

  17. Campoccia D, Mirzaei R, Montanaro L, Arciola CR (2019) Hijacking of immune defences by biofilms: a multifront strategy. Biofouling 35(10):1055–1074. https://doi.org/10.1080/08927014.2019.1689964

    Article  CAS  PubMed  Google Scholar 

  18. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE. https://doi.org/10.1371/journal.pone.0027317

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye T (2014) Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling 30(3):377–383. https://doi.org/10.1080/08927014.2013.878333

    Article  CAS  PubMed  Google Scholar 

  20. Kirker KR, Secor PR, James GA, Fleckman P, Olerud JE, Stewart PS (2009) Loss of viability and induction of apoptosis in human keratinocytes exposed to Staphylococcus aureus biofilms in vitro. Wound Repair Regen 17(5):690–699. https://doi.org/10.1111/j.1524-475X.2009.00523.x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cankirili NK, Kart D, Celebi-Saltik B (2020) Evaluation of the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on human umbilical cord CD146 + stem cells and stem cell-based decellularized matrix. Cell Tissue Bank. https://doi.org/10.1007/s10561-020-09815-6

    Article  PubMed  Google Scholar 

  22. Ward CL, Sanchez CJ, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC (2015) Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol. https://doi.org/10.1186/s12866-015-0412-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shepard BD, Gilmore MS (2002) Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. Infect Immun 70(8):4344–4352. https://doi.org/10.1128/Iai.70.8.4344-4352.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  25. Li HWR, Liao SB, Chiu PCN, Yeung WSB, Ng EHY, Cheung ANY, Tang F, Sum OW (2015) Effects of adrenomedullin on the expression of inflammatory cytokines and chemokines in oviducts from women with tubal ectopic pregnancy: an in-vitro experimental study. Reprod Biol Endocrin. https://doi.org/10.1186/s12958-015-0117-x

    Article  Google Scholar 

  26. Lopez-Marure R, Zapata-Gomez E, Rocha-Zavaleta L, Aguilar MC, Espinosa Castilla M, Melendez Zajgla J, Meraz-Cruz N, Huesca-Gomez C, Gamboa-Avila R, Gomez-Gonzalez EO (2016) Dehydroepiandrosterone inhibits events related with the metastatic process in breast tumor cell lines. Cancer Biol Ther 17(9):915–924. https://doi.org/10.1080/15384047.2016.1195047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maisetta G, Grassi L, Di Luca M, Bombardelli S, Medici C, Brancatisano FL, Esin S, Batoni G (2016) Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32(7):787–800. https://doi.org/10.1080/08927014.2016.1194401

    Article  CAS  PubMed  Google Scholar 

  28. Wolcott R, Costerton JW, Raoult D, Cutler SJ (2013) The polymicrobial nature of biofilm infection. Clin Microbiol Infec 19(2):107–112. https://doi.org/10.1111/j.1469-0691.2012.04001.x

    Article  CAS  Google Scholar 

  29. Clark RAF (1989) Wound repair. Curr Opin Cell Biol 1(5):1000–1008. https://doi.org/10.1016/0955-0674(89)90072-0

    Article  CAS  PubMed  Google Scholar 

  30. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A New Mesenchymal Stem Cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE. https://doi.org/10.1371/journal.pone.0010088

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roy S, Bonfield T, Tartakoff AM (2013) Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0054245

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cabrera-Benitez NE, Perez-Roth E, Ramos-Nuez A, Sologuren I, Padron JM, Slutsky AS, Villar J (2016) Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. Lab Invest 96(6):632–640. https://doi.org/10.1038/labinvest.2016.46

    Article  CAS  PubMed  Google Scholar 

  33. Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerova M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77(5):2065–2075. https://doi.org/10.1128/Iai.01204-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Navarro M, Pu F, Hunt JA (2012) The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells. Exp Cell Res 318(4):361–370. https://doi.org/10.1016/j.yexcr.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  35. Rahyussalim A, Kusnadi Y, Ismail H, Lubis A, Kurniawati T, Merlina M (2012) Effect of Staphylococcus aureus and Staphylococcus epidermidis debris and supernatant on bone marrow stromal cells growth. Acta Med Indones 44(4):304–309

    CAS  PubMed  Google Scholar 

  36. Ruffin M, Brochiero E (2019) Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00182

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brothers KM, Stella NA, Hunt KM, Romanowski EG, Liu XY, Klarlund JK, Shanks RMQ (2015) Putting on the brakes: bacterial impediment of wound healing. Sci Rep-UK. https://doi.org/10.1038/srep14003

    Article  Google Scholar 

  38. Loryman C, Mansbridge J (2008) Inhibition of keratinocyte migration by lipopolysaccharide. Wound Repair Regen 16(1):45–51. https://doi.org/10.1111/j.1524-475X.2007.00290.x

    Article  PubMed  Google Scholar 

  39. Stephens P, Wall IB, Wilson MJ, Hill KE, Davies CE, Hill CM, Harding KG, Thomas DW (2003) Anaerobic cocci populating the deep tissues of chronic wounds impair cellular wound healing responses in vitro. Brit J Dermatol 148(3):456–466. https://doi.org/10.1046/j.1365-2133.2003.05232.x

    Article  CAS  Google Scholar 

  40. Nakayama J, Yokohata R, Sato M, Suzuki T, Matsufuji T, Nishiguchi K, Kawai T, Yamanaka Y, Nagata K, Tanokura M, Sonomoto K (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8(4):804–811. https://doi.org/10.1021/cb300717f

    Article  CAS  PubMed  Google Scholar 

  41. Steck N, Hoffmann M, Sava I, Kim S, Hahne H, Schemann M, Kuster B, Sartor RB, Haller D (2011) Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Int J Med Microbiol 301:106–106

    Google Scholar 

  42. Mylonakis E, Engelbert M, Qin X, Sifri CD, Murray BE, Ausubel FM, Gilmore MS, Calderwood SB (2002) The Enterococcus faecalis fsrB gene, a key component of the fsr quorum-sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect Immun 70(8):4678–4681. https://doi.org/10.1128/Iai.70.8.4678-4681.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marano RJ, Wallace HJ, Wijeratne D, Fear MW, Wong HS, O’Handley R (2015) Secreted biofilm factors adversely affect cellular wound healing responses in vitro. Sci Rep-UK. https://doi.org/10.1038/srep13296

    Article  Google Scholar 

  44. McLaughlin RA, Hoogewerf AJ (2006) Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb Pathog 41(2–3):67–79. https://doi.org/10.1016/j.micpath.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  45. Mittal R, Sharma S, Chhibber S, Harjai K (2006) Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis 29(1):12–26. https://doi.org/10.1016/j.cimid.2005.11.002

    Article  PubMed  Google Scholar 

  46. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. https://doi.org/10.1128/Cmr.00013-11

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105(38):14585–14590. https://doi.org/10.1073/pnas.0805048105

    Article  PubMed  Google Scholar 

  48. Graham CE, Cruz MR, Garsin DA, Lorenz MC (2017) Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci USA 114(17):4507–4512. https://doi.org/10.1073/pnas.1620432114

    Article  CAS  PubMed  Google Scholar 

  49. Werner S (2011) A novel enhancer of the wound healing process the fibroblast growth factor-binding protein. Am J Pathol 179(5):2144–2147. https://doi.org/10.1016/j.ajpath.2011.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez JF, Hahn MM, Gunn JS (2018) Chronic biofilm-based infections: skewing of the immune response. Pathog Dis. https://doi.org/10.1093/femspd/fty023

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wiegand C, Schonfelder U, Abel M, Ruth P, Kaatz M, Hipler UC (2010) Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res 302(6):419–428. https://doi.org/10.1007/s00403-0091011-1

    Article  CAS  PubMed  Google Scholar 

  52. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2000) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 8(1):13–25. https://doi.org/10.1046/j.1524-475x.2000.00013.x

    Article  CAS  PubMed  Google Scholar 

  53. Kirker KR, James GA, Fleckman P, Olerud JE, Stewart PS (2012) Differential effects of planktonic and biofilm MRSA on human fibroblasts. Wound Repair Regen 20(2):253–261. https://doi.org/10.1111/j.1524-475X.2012.00769.x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x

    Article  PubMed  Google Scholar 

  55. Kanangat S, Postlethwaite A, Hasty K, Kang A, Smeltzer M, Appling W, Schaberg D (2006) Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections. Arthritis Res Ther. https://doi.org/10.1186/ar2086

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Hacettepe University, Scientific Research Project Coordination Unit, Grant Number: TSA-2017–15319.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors declare that they have all participated in the design, execution, and analysis of the paper, and that they have approved the final version.

Corresponding author

Correspondence to Didem Kart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelebi-Saltik, B., Kart, D. Dermal fibroblast cells interactions with single and triple bacterial-species biofilms. Mol Biol Rep 48, 3393–3404 (2021). https://doi.org/10.1007/s11033-021-06391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06391-0

Keywords

Navigation