Skip to main content

Advertisement

Log in

Transcriptomic analysis of saffron at different flowering stages using RNA sequencing uncovers cytochrome P450 genes involved in crocin biosynthesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Saffron is a well-known Chinese traditional herb, and crocin biosynthesis is related to the yield and quality of saffron. This study aimed to screen differentially expressed genes (DEGs) in saffron at different flowering stages and identify cytochrome P450 (CYP) genes involved in crocin biosynthesis. Saffron samples at different flowering stages were used for RNA sequencing, and DEGs between the samples at three days before the flowering stage (− 3da) and two days after the flowering stage (+ 2da) were screened. Thereafter, significantly differentially expressed CYP genes were identified, and CYP gene expression at different flowering stages and in various tissues of saffron was determined using real-time quantitative polymerase chain reaction (RT-qPCR). After sequencing and analysis, 1508 DEGs between the samples at − 3da and + 2da were identified, including 487 upregulated and 1021 downregulated genes, which were enriched in 16 biological processes, 5 cellular components, 3 molecular functions, and 11 KEGG pathways, including protein processing in endoplasmic reticulum, pentose and glucuronate interconversions, starch and sucrose metabolism, estrogen signaling pathway, and mitogen-activated protein kinase signaling pathway. In addition, 12 significantly differentially expressed CYP genes were identified. The RT-qPCR results showed that CYP76C4, CYP72A15, CYP72A219, CYP97B2, CYP714C2, CYP71A1, CYP94C1, and CYP86A8 were all expressed in the pistils, and CYP72A219, CYP72A15, CYP97B2, CYP71A1, and CYP86A8 were highly expressed in the pistils. Our study established a transcriptome library of saffron and found that CYP72A219, CYP72A15, CYP97B2, CYP71A1, and CYP86A8 may be candidates involved crocin biosynthesis in saffron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Li J, Wu G, Qin C, Chen W, Chen G, Wen L (2019) Structure characterization and otoprotective effects of a new endophytic exopolysaccharide from saffron. Molecules 24(4):749. https://doi.org/10.3390/molecules24040749

    Article  CAS  PubMed Central  Google Scholar 

  2. Hoshyar R, Mollaei H (2017) A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 69(11):1419–1427. https://doi.org/10.1111/jphp.12776

    Article  CAS  PubMed  Google Scholar 

  3. Siddiqui MJ, Saleh MSM, Basharuddin S, Zamri SHB, Mohd Najib MHB, ChIbrahim MZB, Binti Mohd Noor NA, Bint Mazha HN, Mohd Hassan N, Khatib A (2018) Saffron (Crocus sativus L.): as an antidepressant. J Pharm Bioallied Sci 10(4):173–180. https://doi.org/10.4103/JPBS.JPBS_83_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci USA 111(33):12246–12251. https://doi.org/10.1073/pnas.1404629111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li K, Li Y, Ma Z, Zhao J (2015) Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK. Int J Mol Med 36(5):1291–1299. https://doi.org/10.3892/ijmm.2015.2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolhassani A, Khavari Bathaie ASZ (2014) Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochem Biophys Acta 1:20–30. https://doi.org/10.1016/j.bbcan.2013.11.001

    Article  CAS  Google Scholar 

  7. Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19(11):997–1000. https://doi.org/10.1002/ptr.1749

    Article  CAS  PubMed  Google Scholar 

  8. Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H (2017) Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 55(3):206–213. https://doi.org/10.5114/fn.2017.70485

    Article  PubMed  Google Scholar 

  9. Liu M, Amini A, Ahmad Z (2017) Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Int J Biol Macromol 95:145–152. https://doi.org/10.1016/j.ijbiomac.2016.11.038

    Article  CAS  PubMed  Google Scholar 

  10. Nader M, Chahine N, Salem C, Chahine R (2016) Saffron (Crocus sativus) pretreatment confers cardioprotection against ischemia-reperfusion injuries in isolated rabbit heart. J Physiol Biochem 72(4):711–719. https://doi.org/10.1007/s13105-016-0510-8

    Article  CAS  PubMed  Google Scholar 

  11. Rezaee R, Hosseinzadeh H (2013) Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci 16(1):12–26

    PubMed  PubMed Central  Google Scholar 

  12. Zinati Z, Shamloo-Dashtpagerdi R, Behpouri A (2016) In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Mol Biol Res Commun 5(4):233–246

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar P, Lucini L, Rouphael Y, Cardarelli M, Kalunke RM, Colla G (2015) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477. https://doi.org/10.3389/fpls.2015.00477

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8(1):28–39. https://doi.org/10.1016/j.molp.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  15. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109(14):5535–5540. https://doi.org/10.1073/pnas.1115982109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bhat A, Mishra S, Kaul S, Dhar MK (2018) Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L. PLoS ONE 13(4):e0195348. https://doi.org/10.1371/journal.pone.0195348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16(1):698. https://doi.org/10.1186/s12864-015-1894-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6:22456. https://doi.org/10.1038/srep22456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji A, Jia J, Xu Z, Li Y, Bi W, Ren F, He C, Liu J, Hu K, Song J (2017) Transcriptome-guided mining of genes involved in crocin biosynthesis. Front Plant Sci 8:518. https://doi.org/10.3389/fpls.2017.00518

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Li P, Lu X (2019) Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants. J Exp Bot 70(18):4619–4630. https://doi.org/10.1093/jxb/erz203

    Article  CAS  PubMed  Google Scholar 

  21. Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667. https://doi.org/10.1146/annurev.arplant.54.031902.134840

    Article  CAS  PubMed  Google Scholar 

  22. Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQ, Pandey S, Xu D, Yu O (2010) Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol 10:243. https://doi.org/10.1186/1471-2229-10-243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bathe U, Tissier A (2019) Cytochrome P450 enzymes: a driving force of plant diterpene diversity. Phytochemistry 161:149–162. https://doi.org/10.1016/j.phytochem.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11(3):3298–3309. https://doi.org/10.4238/2012.September.12.13

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Wu B, Nelson DR, Wu K, Liu C (2014) Computational identification and systematic classification of novel cytochrome P450 genes in Salvia miltiorrhiza. PLoS ONE 9(12):e115149. https://doi.org/10.1371/journal.pone.0115149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Annadurai RS, Jayakumar V, Mugasimangalam RC, Katta MA, Anand S, Gopinathan S, Sarma SP, Fernandes SJ, Mullapudi N, Murugesan S, Rao SN (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 13:663. https://doi.org/10.1186/1471-2164-13-663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Liu X, Wang J, Lu Y (2014) Transcriptomic analysis of Asiatic lily in the process of vernalization via RNA-seq. Mol Biol Rep 41(6):3839–3852. https://doi.org/10.1007/s11033-014-3250-2

    Article  CAS  PubMed  Google Scholar 

  29. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. https://doi.org/10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu G, Ao R, Zhi Z, Jia J, Yu B (2019) miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury. J Cell Physiol 234(7):10205–10217. https://doi.org/10.1002/jcp.27690

    Article  CAS  PubMed  Google Scholar 

  31. Javadi B, Sahebkar A, Emami SA (2013) A survey on saffron in major islamic traditional medicine books. Iran J Basic Med Sci 16(1):1–11

    PubMed  PubMed Central  Google Scholar 

  32. Royce TE, Rozowsky JS, Gerstein MB (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res 35(15):e99. https://doi.org/10.1093/nar/gkm549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao K, Chen H, Shen W, Hong Y, Huang J, Li B, Gao G, Li J (2019) Key technology of post-harvest processing on saffron (in Chinese). J Zhejiang Agric Sci 60(6):1008–10101

    Google Scholar 

  34. Sun J, Ren L, Cheng Y, Gao J, Dong B, Chen S, Chen F, Jiang J (2014) Identification of differentially expressed genes in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq. Gene 552(1):59–66. https://doi.org/10.1016/j.gene.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  35. Liu JX, Howell SH (2016) Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol 211(2):418–428. https://doi.org/10.1111/nph.13915

    Article  CAS  PubMed  Google Scholar 

  36. Strasser R (2018) Protein quality control in the endoplasmic reticulum of plants. Annu Rev Plant Biol 69:147–172. https://doi.org/10.1146/annurev-arplant-042817-040331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Qin T, Dong N, Wei C, Zhang Y, Sun R, Dong T, Chen Q, Zhou R, Wang Q (2019) Integrative analysis of the lncRNA and mRNA transcriptome revealed genes and pathways potentially involved in the anther abortion of cotton (Gossypium hirsutum L.). Genes 10(12):947. https://doi.org/10.3390/genes10120947

    Article  CAS  PubMed Central  Google Scholar 

  38. Zeng X, Luo T, Li J, Li G, Zhou D, Liu T, Zou X, Pandey A, Luo Z (2018) Transcriptomics-based identification and characterization of 11 CYP450 genes of Panax ginseng responsive to MeJA. Acta Biochim Biophys Sin 50(11):1094–1103. https://doi.org/10.1093/abbs/gmy120

    Article  CAS  PubMed  Google Scholar 

  39. Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, Richter M, He C, Ji A, Sun W, Kong J, Hu K, Ren F, Song J, Wang Z, Gao T, Xiong C, Yu H, Xin T, Albert VA, Giuliano G, Chen S, Song J (2020) Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol 18(1):63. https://doi.org/10.1186/s12915-020-00795-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158. https://doi.org/10.1199/tab.0158

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang M, Xu B, Zhou B, He T (2019) Determination of crocin-I and crocin-II in different parts of Crocus sativus by HPLC (in Chinese). Chin Trandit Patent Med 41(5):1102–1105

    Google Scholar 

  42. Salas-Perez RA, Saski CA, Noorai RE, Srivastava SK, Lawton-Rauh AL, Nichols RL, Roma-Burgos N (2018) RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS ONE 13(4):e0195488. https://doi.org/10.1371/journal.pone.0195488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song J, Luo H, Xu Z, Zhang Y, Xin H, Zhu D, Zhu X, Liu M, Wang W, Ren H, Chen H, Gao T (2020) Mining genes associated with furanocoumarin biosynthesis in an endangered medicinal plant, Glehnia littoralis. J Genet 99:1–11

    Article  Google Scholar 

  44. Ilc T, Parage C, Boachon B, Navrot N, Werck-Reichhart D (2016) Monoterpenol oxidative metabolism: role in plant adaptation and potential applications. Front Plant Sci 7:509. https://doi.org/10.3389/fpls.2016.00509

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Gou J, Chen F, Li C, Zhang Y (2016) Comparative transcriptome analysis identifies putative genes involved in the biosynthesis of Xanthanolides in Xanthium strumarium L. Front Plant Sci 7:1317. https://doi.org/10.3389/fpls.2016.01317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hallahan DL, Lau SM, Harder PA, Smiley DW, Dawson GW, Pickett JA, Christoffersen RE, O’Keefe DP (1994) Cytochrome P-450-catalysed monoterpenoid oxidation in catmint (Nepeta racemosa) and avocado (Persea americana); evidence for related enzymes with different activities. Biochim Biophys Acta 1201(1):94–100. https://doi.org/10.1016/0304-4165(94)90156-2

    Article  CAS  PubMed  Google Scholar 

  47. Kim J, Smith JJ, Tian L, Dellapenna D (2009) The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 50(3):463–479. https://doi.org/10.1093/pcp/pcp005

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Wei K (2020) Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC Plant Biol 20(1):93. https://doi.org/10.1186/s12870-020-2288-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pinot F, Beisson F (2011) Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J 278(2):195–205. https://doi.org/10.1111/j.1742-4658.2010.07948.x

    Article  CAS  PubMed  Google Scholar 

  50. Renard J, Ninoles R, Martinez-Almonacid I, Gayubas B, Mateos-Fernandez R, Bissoli G, Bueso E, Serrano R, Gadea J (2020) Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant Cell Environ 43(10):2523–2539. https://doi.org/10.1111/pce.13822

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81703667), the Jiaxing Science and Technology Planning Project (No. 2020AY10023), the China–Iraq Saffron International Joint Research Center (No. 2017C04009), the Key Projects of International Scientific and Technological Innovation Cooperation between Governments (No. 2017YFE0130100), the Zhejiang College Students Science and Technology Innovation Project (No. 2020R417016), the Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research, and the Jiaxing Sci-Tech Commissioner Project (No. 2021K117).

Author information

Authors and Affiliations

Authors

Contributions

GG and JL designed the experiments; PW, JW, BL, and QJ performed the experiments and analyzed the experimental results; GG, JL, and PW obtained the funding and supervised the experiments; GG drafted the paper; and JL revised the paper. All authors have reviewed and approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Ping Wang or Jun Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Wu, J., Li, B. et al. Transcriptomic analysis of saffron at different flowering stages using RNA sequencing uncovers cytochrome P450 genes involved in crocin biosynthesis. Mol Biol Rep 48, 3451–3461 (2021). https://doi.org/10.1007/s11033-021-06374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06374-1

Keywords

Navigation