Skip to main content
Log in

Molecular phylogeny, pathogenic variability and phytohormone production of Fusarium species associated with bakanae disease of rice in temperate agro-ecosystems

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bakanae is the emerging disease threating the rice cultivation globally. Yield reduction of 4–70% is recorded in different parts of the world. A total of 119 Fusarium isolates were collected from rice plants at different geographical locations and seeds of different rice cultivars. The isolates were evaluated for morphological, biochemical and pathogenic diversity. The amplification of TEF-1α gene was carried out for exploring the species spectrum associated with the cultivated and pre-released rice varieties. The production of gibberellin varied from 0.53 to 2.26 µg/25 ml, while as that of Indole acetic acid varied from 0.60 to 3.15 µg/25 ml among the Fusarium isolates. The phylogenetic analysis identified 5 different species of the genus Fusarium viz. Fusarium fujikuroi, F. proliferatum, F. equiseti, F.oxysporum and F. persicinum after nucleotide blasting in NCBI. Only two Fusarium spp. F. fujikuroi and F. proliferatum were found to be pathogenic under virulence assays of the isolates. The isolates showed a considerable variation in morphological and pathogenic characters. The isolates were divided into different groups based on morphology and pathogenicity tests. The isolates showed a considerable variation in morphology, phytohormone profile and virulence indicative of population diversity. Three species F. equiseti, F.oxysporum and F. persicinum which have not been reported as pathogens of rice in India were found to be associated with bakanae disease of rice, however their pathogenicity could not be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dwivedi S (2016) Identification of QTLs for coleoptile length in rice (Oryza sativa L.). Dissertation, Indra Gandhi Krishi Vishwavidyalaya, Raipur

  2. USDA. FAS (2018). https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_New%20Delhi_India_3-16-2018.pdf

  3. Kumar PMK, Gowda DKS, Rishikant MN, Kumar KT, Pandurange G, Vishwanath K (2013) Impact of fungicides on rice production in India. In: Nita M (ed) Fungicides-showcases of integrated plant disease management from around the world. Intech Open, Viena, pp 77–98

    Google Scholar 

  4. Sharma VK, Thind TS (2007) Rice diseases: ecology and control. In: Pimentel D (ed) Encyclopedia of pest management. CRC Press, Florida, pp 556–561

    Google Scholar 

  5. Hori S (1898) Some observations on bakanae disease of the rice plant. Memb Agric Res Stn 12:110–119

    Google Scholar 

  6. Sawada K (1917) Beitrage uber Formosas-Pilze no.14. . Trans Nat Hist Soc Formosa 31:131–133

    Google Scholar 

  7. Ito S, Kimura J (1931) Studies on the bakanae disease of rice plant. Report Hokkaido Natl Agric Exp Stn 27:1–95

    Google Scholar 

  8. Naeem M, Iqbal M, Parveen N, Sami-Ul-Allh AQ, Rehman A, Shauket MS (2016) An overview of bakanae disease of rice. Am Eurasian J Agric Environ Sci 16(2):270–277

    Google Scholar 

  9. Singh R, Sunder S (1997) Foot rot and bakanae of rice: retrospects and prospects. Intern J Trop Plant Dis 15:153–176

    Google Scholar 

  10. Bashyall BM, Aggarwal R, Rawat K, Sharma S, Gupta AK et al (2020) Genetic diversity and population structure of Fusarium fujikuroicausing bakanae, an emerging disease of rice in India. Indian J Exp Biol 8:45–52

    Google Scholar 

  11. Singh R, Sunder S (2012) Foot rot and bakanae of rice: an overview. Reviews Plant Pathol 5:565–604

    Google Scholar 

  12. Bashyal BM, Aggarwal R (2013) Molecular identification of Fusarium spp. associated with bakanae disease of rice in India. Indian J Agric Sci 83(1):72–77

    Google Scholar 

  13. Wulff EG, Sorensen JL, Lubeck M, Nielsen KF, Thrane U, Torp J (2010) Fusarium spp. associated with rice bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol 12(3):649–657

    Article  PubMed  Google Scholar 

  14. Amatulli MT, Spadaro D, Gullino ML, Garibaldi A (2010) Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol 59:839–844

    Article  CAS  Google Scholar 

  15. Alberman SL, Tudzynski P, Bettina (2013) Strategies for strain simprovement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechnol 97(7):2979–2995

    Article  Google Scholar 

  16. Stud L, Humpf HU, Tudzynski B (2013) Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS ONE 8(2):e58185

    Article  Google Scholar 

  17. Tudzynski B (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: Bimolecular aspects. Appl Microbiol Biotechnol 52:298–310

    Article  CAS  PubMed  Google Scholar 

  18. Philip W, Albermann S, Niehaus EM, Studt L, von-Bargen KW, Brock NL et al (2012) The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. PLoS ONE 7(5):e37519

    Article  Google Scholar 

  19. Rajagopalan K, Bhuvaneswari K (1964) Effect of germination of seeds and host exuadations during germination on foot-rot disease of rice. J Phytopathol 50(3):221–226

    Article  Google Scholar 

  20. Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. APS Press, St. Paul

    Google Scholar 

  21. Geiser DM, Jimnez-Gasco MDM, Kang S, Makalowska I, Veereraghawan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) FUSARIUM-ID v. 1.0: A DNA sequence database for Identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  22. Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Froslev T, Ge Z, Kerrigan RW, Slot JC, Yang Z, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451

    Article  CAS  PubMed  Google Scholar 

  23. Olal S, Olango N, Kiggundu A, Ochwo S, Adriko J, Nanteza A, Matovu E, Lubega GW, Kagezi G, Hakiza GJ, Wagoire WW, Rutherford MA, Opiyo SO (2018) Using translation elongation factor gene to specifically detect and diagnose Fusarium xylaroides, a Causative Agent of Coffee Wilt Disease in Ethiopia, East and Central Africa. J Plant Pathol Microbiol 9:6

    Google Scholar 

  24. Gupta AK, Solanki IS, Bashyal BM, Singh Y, Srivastav K (2015) Bakanae of rice: an emerging disease in Asia. J Anim Plant Sci 25(6):1499–1514

    CAS  Google Scholar 

  25. Miles SR (1963) Handbook of tolerances and measures of precision for seed testing. Proc Int Seed Test Assoc 28(3):644

    Google Scholar 

  26. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. The Pennsylvania State University Press, USA

    Google Scholar 

  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Donnell K, Kistler HI, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Academy Sci USA 95:2044–2049

    Article  CAS  Google Scholar 

  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bashyal BM, Aggarwal R, Sharma S, Gupta S, Rawat K, Singh D, Krishnan SG (2016) Occurrence, identification and pathogenicity of Fusarium spp. associated with bakanae disease of basmati rice in India. Eur J Plant Pathol 144(2):457–466

    Article  CAS  Google Scholar 

  32. Li DJ, Luo K (1997) Study of the relationship between the occurrence of bakanae disease in hybrid rice and the application of gibberellins to seed reproduction. J Human Agric Univers 23:47–49

    CAS  Google Scholar 

  33. Yang CD, Guo LB, Li XM, Ji ZJ, Ma LY, Qian Q (2006) Analysis of QTLs for resistance to rice bakanae disease. Chin J Rice Sci 20:657–659

    CAS  Google Scholar 

  34. Suga H, Arai M, Fukasawa E, Motohashi K, Nakagawa H, Tateishi H et al (2019) Genetic differentiation associated with fumonisin and gibberellin production in Japanese Fusarium fujikuroi. Appl Environ Microbiol 85:e02414-e2418

    Article  CAS  PubMed  Google Scholar 

  35. Lone ZA, Bhat ZA, Najeeb S, Ahanger MA, Shikari AB, Parray GA, Hussain S (2016) Screening of rice genotypes against bakanae disease caused by Fusarium fujikuroi Nirenberg. Oryza 53(1):91–97

    Google Scholar 

  36. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Ames, Iowa

    Book  Google Scholar 

  37. Zainudin NAIM, Razak AA, Salleh B (2008) Bakanae disease of rice in Malaysia and Indonesia: etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. J Plant Prot Res 48:475–485

    Article  CAS  Google Scholar 

  38. Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to discolor and other sections. Am J Bot 32:657–666

    Article  Google Scholar 

  39. Booth C (1971) The genus Fusarium. CMI, Kew Surrey, England, pp 1–237

    Google Scholar 

  40. Nirenberg HI (1976) Untersuchungen uber die morphologische und biologische differenzierung in Fusarium-Sektion Liseola. Mitt Biol Bundesansi Land-Forstwirtsch Berlin Dahlem 169:1–117

    Google Scholar 

  41. Ou SH (1987) Rice diseases. England, CAB International, CMI, Kew, Surrey, p 256

    Google Scholar 

  42. Amatulli MT, Spadaro D, Gullino ML, Garibaldia A (2010) Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathol 59:839–844

    Article  CAS  Google Scholar 

  43. Ou SH (1985) Rice diseases. CMI, Kew, UK

    Google Scholar 

  44. Summerell BA, Salleh B, Leslie JF (2003) A utilitarian approach to Fusarium identification. Plant Dis 87:117–128

    Article  PubMed  Google Scholar 

  45. Marasas WFO, Thiel PG, Rabie CJ, Nelson PE, Toussoun TA (1986) Monilformin production in Fusarium section Liseola. Mycologia 78:242–247

    Article  CAS  Google Scholar 

  46. Desjardins AE, Manandhar HK, Plattner RD, Anandhar GG, Poling SM, Maragos CM (2000) Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 63(3):1020–1025

    Article  Google Scholar 

  47. Proctor RH, Desjardins AE, Moretti A (2010) Biological and chemical complexity of Fusarium proliferatum. In: Strange RN, Gullino ML (eds) The role of plant pathology in food safety and food security in the 21st century. Springer, The Netherlands, pp 97–111

    Google Scholar 

  48. Cumagun CJR, Arcillas E, Gergon E (2011) UP-PCR analysis of the seedborne pathogen Fusarium fujikuroi causing bakanae disease in rice. Int J Agric Biol 13:1029–1032

    CAS  Google Scholar 

  49. Chen K, Any QC (2006) Transcriptional response to gibberellin and abscisic acid in barley aleuron. J Integr Plant Biol 48:591–612

    Article  CAS  Google Scholar 

  50. Anonymous (1988) Irtp, pp 54, IRRI, Manila

Download references

Acknowledgements

The authors are highly thankful to Dean, Faculty of Agriculture, SKUAST-Kashmir, for providing necessary facilities for conducting the research work and for his valuable suggestions during the course of study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F. A. Mohiddin, Rukhsanah Majid, Ashraf Ahanger and Asif B. Shikari. Methodology: F. A. Mohiddin, Aflaq Hamid and Ashraf Ahanger. Formal analysis and investigation: Rukhsanah Majid, F. A. Mohiddin, Arif Hussain Bhat, M. S. Dar & Sajad-un-Nabi. Writing—original draft preparation: Rukhsanah Majid and F. A. Mohiddin. Writing—review and editing: Arif Hussain Bhat and F. A. Mohiddin. Resources: Najeebur Rehman, Ashaq Hussain and N. A. Bhat. Supervision: F. A. Mohiddin, Ashraf Ahanger and F. A. Bhat.

Corresponding author

Correspondence to Arif Hussain Bhat.

Ethics declarations

Conflicts of interest

All authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohiddin, F.A., Majid, R., Bhat, A.H. et al. Molecular phylogeny, pathogenic variability and phytohormone production of Fusarium species associated with bakanae disease of rice in temperate agro-ecosystems. Mol Biol Rep 48, 3173–3184 (2021). https://doi.org/10.1007/s11033-021-06337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06337-6

Keywords

Navigation