Skip to main content

Advertisement

Log in

Interplay of autophagy and cancer stem cells in hepatocellular carcinoma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Liver cancer is the sixth most common cancer and the fourth leading cause of cancer deaths in the world. The most common type of liver cancers is hepatocellular carcinoma (HCC). Autophagy is the cellular digestion of harmful components by sequestering the waste products into autophagosomes followed by lysosomal degradation for the maintenance of cellular homeostasis. The impairment of autophagy is highly associated with the development and progression of HCC although autophagy may be involved in tumour-suppressing cellular events. In regards to its protecting role, autophagy also shelters the cells from anoikis- a programmed cell death in anchorage-dependent cells detached from the surrounding extracellular matrix which facilitates metastasis in HCC. Liver cancer stem cells (LCSCs) have the ability for self-renewal and differentiation and are associated with the development and progression of HCC by regulating stemness, resistance and angiogenesis. Interestingly, autophagy is also known to regulate normal stem cells by promoting cellular survival and differentiation and maintaining cellular homeostasis. In this review, we discuss the basal autophagic mechanisms and double-faceted roles of autophagy as both tumour suppressor and tumour promoter in HCC, as well as its association with and contribution to self-renewal and differentiation of LCSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

CSC:

Cancer stem cell

PI3K:

Phosphatidylinositol 3-kinase

VPS34:

Vacuolar protein sorting 34

mTORC1:

Mammalian target of rapamycin complex

ULK1:

Unc-51 like kinase 1

ATG:

Autophagy related protein

FIP200:

Focal adhesion kinase family-interacting protein 200 kDa

AMPK:

5` Adenosine monophosphate-activated protein kinase

PI3P:

Phosphatidylinositol triphosphate

LC3:

Microtubule-associated protein 1A/1B-light chain 3

PE:

Phosphatidylethanolamine

SQSTM1/p62:

Sequestosome-1/ubiquitin-binding protein p62

NIX:

BNIP3L/Receptor for mitochondrial protein

OPTN:

Optineurin

LAMP2:

Lysosome-associated membrane protein 2

GRASP55:

Golgi reassembly-stacking protein 55

EMS:

Eukaryotic endomembrane system

ILVs:

Intraluminal vesicles

MVBs:

Multivesicular bodies

MDB:

Mallory-Denk bodies

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

Nrf2-Keap1:

Nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1

HIF:

Hypoxia inducible factor

BNIP3:

BCL2 and adenovirus E1B 19-kDa-interacting protein 3

BNIP3L:

BCL2: adenovirus E1B 19-kDa-interacting protein 3-like

COX2:

Cyclooxygenase-2

PGE2:

Prostaglandin E(2)

TNM:

Tumour, node, metastasis

CTC:

Circulatory tumour cells

EMT:

Epithelial-mesenchymal transition

TGF-β:

Transforming growth factor β

TRAF6:

Tumour necrosis factor receptor-associated factor-6

TAK1:

TGF-β activated kinase 1

DRAM1:

DNA damage modulator 1

CREB:

CAMP response element binding

HO-1:

ROS/heme oxygenase 1

UPR:

Unfolded protein response

HSP:

Heat shock protein

5-FU:

5-Fluorouracil

TAE:

Transarterial embolization

TACE:

Transarterial chemoembolization

Egr-1:

Early growth response-1

IR:

Ionizing radiation

VEGFR:

Vascular endothelial growth factor receptor

PDGFR-β:

Platelet-derived growth factor receptor β

GSTM1:

Glutathione transferase Mu 1

LCSC:

Liver cancer stem cells

AFP:

Alpha fetoprotein

FGFs:

Fibroblast growth factors

ECM:

Extracellular matrix

SIRT1 :

Gene encoding Sirtuin1 protein

ALDH:

Aldehyde dehydrogenase

ABC:

ATP-binding cassette

4-HNE:

4-Hydroxy-2-nonenal

NAD:

Nicotinamide adenosine dinucleotide

MEK:

Mitogen-activated protein kinase

MRPS5:

Mitochondrial ribosomal protein S5

AC:

Acetyl

TCF/LEF:

T-cell factor/lymphoid enhancer factor

CSL, CBF-1:

Suppressor hairless lag-1

MAML:

Mastermind-like protein

NICD:

Notch intracellular domain

NECD:

Notch extracellular domain

LSD1:

Lysine demethylase 1

UPRmt:

Mitochondrial unfolded protein response

HPC/LPC:

Hepatic/liver progenitor cells

PINK1:

PTEN-induced putative kinase

HGF:

Hepatocyte growth factor

FGFR:

Fibroblast growth factor receptor

References

  1. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967. https://doi.org/10.1038/nrc2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. King JS (2012) Autophagy across the eukaryotes: is S. cerevisiae the odd one out? Autophagy 8:1159–1162. https://doi.org/10.4161/auto.20527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174. https://doi.org/10.1016/0014-5793(93)80398-e

    Article  CAS  PubMed  Google Scholar 

  4. Abounit K, Scarabelli TM, McCauley RB (2012) Autophagy in mammalian cells. World J Biol Chem 3:1–6. https://doi.org/10.4331/wjbc.v3.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156. https://doi.org/10.1146/annurev-biochem-052709-094552

    Article  CAS  PubMed  Google Scholar 

  6. Lee MS (2014) Role of islet β cell autophagy in the pathogenesis of diabetes. Trends Endocrinol Metab 25:620–627. https://doi.org/10.1016/j.tem.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  7. Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19:3466. https://doi.org/10.3390/ijms19113466

    Article  CAS  PubMed Central  Google Scholar 

  8. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  9. Raihan R, Azzeri A, Shabaruddin FH, Mohamed R (2018) Hepatocellular carcinoma in Malaysia and its changing trend. Euroasian J Hepatogastroenterol 8:54–56. https://doi.org/10.5005/jp-journals-10018-1259

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montella M, Crispo A, Giudice A (2011) HCC, diet, and metabolic factors. Hepat Mon 11:159–162

    PubMed  PubMed Central  Google Scholar 

  11. Bartosch B (2010) Hepatitis B and C viruses and hepatocellular carcinoma. Viruses 2:1504–1509. https://doi.org/10.3390/v2081504

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chisari FV, Isogawa M, Wieland SF (2010) Pathogenesis of hepatitis B virus infection. Parodontol 58:258–266. https://doi.org/10.1016/j.patbio.2009.11.001

    Article  CAS  Google Scholar 

  13. Irshad M, Mankotia DS, Irshad K (2013) An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 19:7896–7909. https://doi.org/10.3748/wjg.v19.i44.7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576. https://doi.org/10.1053/j.gastro.2007.04.061

    Article  CAS  PubMed  Google Scholar 

  15. Heidelbaugh JJ, Bruderly M (2006) Cirrhosis and chronic liver failure: Part I. Diagnosis and evaluation. Am Fam Physician 74:756–762

    PubMed  Google Scholar 

  16. Sengupta S, Parikh ND (2017) Biomarker development for hepatocellular carcinoma early detection: current and future perspectives. Hepatic Oncol 4:111–122. https://doi.org/10.2217/hep-2017-0019

    Article  Google Scholar 

  17. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G (2016) Hepatocellular carcinoma. Nat Rev Dis Prim 2:16018. https://doi.org/10.1038/nrdp.2016.18

    Article  PubMed  Google Scholar 

  18. Llovet JM, Fuster BJ (2004) The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transplant 10:S115-120. https://doi.org/10.1002/lt.20034

    Article  Google Scholar 

  19. Santopaolo F, Lenci I, Milana M, Manzia TM, Baiocchi L (2019) Liver transplantation for hepatocellular carcinoma: Where do we stand? World J Gastroenterol 25:2591–2602. https://doi.org/10.3748/wjg.v25.i21.2591

    Article  PubMed  PubMed Central  Google Scholar 

  20. Di Fazio P, Matrood S (2018) Targeting autophagy in liver cancer. Transl Gastroenterol Hepatol 3:39. https://doi.org/https://doi.org/10.21037/tgh.2018.06.09

  21. White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22:212–217. https://doi.org/10.1016/j.ceb.2009.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akkoç Y, Gözüaçık D (2018) Autophagy and liver cancer. Turkish J Gastroenterol 29:270–282. https://doi.org/10.5152/tjg.2018.150318

    Article  Google Scholar 

  23. Sheng J, Qin H, Zhang K, Li B, Zhang X (2018) Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. Am J Cancer Res 8:354–365

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang F, Wang BR, Wang YG (2018) Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol 24:4643–4651. https://doi.org/10.3748/wjg.v24.i41.4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Desai A, Yan Y, Gerson SL (2019) Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl Med 8:75–81. https://doi.org/10.1002/sctm.18-0123

    Article  PubMed  Google Scholar 

  27. Ji J, Wang XW (2012) Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 39:461–472. https://doi.org/10.1053/j.seminoncol.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG (2018) Cancer stem cells in hepatocellular carcinoma: An overview and promising therapeutic strategies. Ther Adv Med Oncol 10:1758835918816287. https://doi.org/10.1177/1758835918816287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728. https://doi.org/10.1016/j.stem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  30. Wang K, Sun D (2018) Cancer stem cells of hepatocellular carcinoma. Prim Liver Cancer Challenges Perspect 9:23306–23314

    Google Scholar 

  31. Zhang H (2020) CCND1 silencing suppresses liver cancer stem cell differentiation through inhibiting autophagy. Hum Cell 33:140–147. https://doi.org/10.1007/s13577-019-00295-9

    Article  CAS  PubMed  Google Scholar 

  32. Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33:437–449. https://doi.org/10.1083/jcb.33.2.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Duve C, Wattiaux R (1966) FUNCTIONS OF LYSOSOMES. Annu Rev Physiol 28:435–492. https://doi.org/10.1146/annurev.ph.28.030166.002251

    Article  PubMed  Google Scholar 

  34. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23. https://doi.org/10.1038/cr.2013.169

    Article  CAS  PubMed  Google Scholar 

  35. Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 4:1–14. https://doi.org/10.1101/cshperspect.a008813

    Article  CAS  Google Scholar 

  36. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388. https://doi.org/10.1038/cdd.2014.150

    Article  CAS  PubMed  Google Scholar 

  37. Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17. https://doi.org/10.1042/BJ20071427

    Article  CAS  PubMed  Google Scholar 

  38. Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X (2009) ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305. https://doi.org/10.1074/jbc.M900573200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shang L, Chen S, Du F, Li S, Zhao L, Wang X (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 108:4788–4793. https://doi.org/10.1073/pnas.1100844108

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Z, Klionsky DJ (2010) Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131. https://doi.org/10.1016/j.ceb.2009.11.014

    Article  CAS  PubMed  Google Scholar 

  42. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701. https://doi.org/10.1083/jcb.200803137

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F (2013) Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep 14:206–211. https://doi.org/10.1038/embor.2012.208

    Article  CAS  PubMed  Google Scholar 

  44. Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9:424–425. https://doi.org/10.4161/auto.22931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518. https://doi.org/10.1016/j.biocel.2004.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Müller AJ, Proikas-Cezanne T (2015) Function of human WIPI proteins in autophagosomal rejuvenation of endomembranes? FEBS Lett 589:1546–1551. https://doi.org/10.1016/j.febslet.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  47. Feng Y, Klionsky DJ (2017) Autophagic membrane delivery through ATG9. Cell Res 27:161–162. https://doi.org/10.1038/cr.2017.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ying H, Yue BYJT (2016) Optineurin: the autophagy connection. Exp Eye Res 144:73–80. https://doi.org/10.1016/j.exer.2015.06.029

    Article  CAS  PubMed  Google Scholar 

  49. Viret C, Rozières A, Faure M (2018) Novel insights into NDP52 autophagy receptor functioning. Trends Cell Biol 28:255–257. https://doi.org/10.1016/j.tcb.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Wang Y (2018) GRASP55 facilitates autophagosome maturation under glucose deprivation. Mol Cell Oncol 5:e1494948. https://doi.org/10.1080/23723556.2018.1494948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao YG, Zhang H (2019) Autophagosome maturation: an epic journey from the ER to lysosomes. J Cell Biol 218:757–770. https://doi.org/10.1083/jcb.201810099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tong J, Yan X, Yu L (2010) The late stage of autophagy: cellular events and molecular regulation. Protein Cell 1:907–915. https://doi.org/10.1007/s13238-010-0121-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Autophagy termination and lysosome reformation regulated by mTOR. Nature 465:942–946. https://doi.org/10.1038/nature09076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berg TO, Fengsrud M, Strømhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes: evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892. https://doi.org/10.1074/jbc.273.34.21883

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura S, Yoshimori T (2017) New insights into autophagosome-lysosome fusion. J Cell Sci 130:1209–1216. https://doi.org/10.1242/jcs.196352

    Article  CAS  PubMed  Google Scholar 

  56. Mitra V, Metcalf J (2012) Metabolic functions of the liver. Anaesth Intensive Care Med 13:54–55. https://doi.org/10.1016/j.mpaic.2011.11.006

    Article  Google Scholar 

  57. Lavallard VJ, Gual P (2014) Autophagy and non-alcoholic fatty liver disease. Biomed Res Int 2014:120179. https://doi.org/10.1155/2014/120179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Madrigal-Matute J, Cuervo AM (2016) Regulation of liver metabolism by autophagy. Gastroenterology 150:328–339. https://doi.org/10.1053/j.gastro.2015.09.042

    Article  CAS  PubMed  Google Scholar 

  59. Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng DM, Tada N, Tanaka K, Kominami E, Ueno T (2011) Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7:727–736. https://doi.org/10.4161/auto.7.7.15371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akman HO, Raghavan A, Craigen WJ (2011) Animal models of glycogen storage disorders. Prog Mol Biol Transl Sci 100:369–388. https://doi.org/10.1016/B978-0-12-384878-9.00009-1

    Article  CAS  PubMed  Google Scholar 

  62. Ke PY (2019) Diverse functions of autophagy in liver physiology and liver diseases. Int J Mol Sci 20:300. https://doi.org/10.3390/ijms20020300

    Article  CAS  PubMed Central  Google Scholar 

  63. Afifiyan N, Tillman B, French BA, Sweeny O, Masouminia M, Samadzadeh S, French SW (2017) The role of Tec kinase signaling pathways in the development of Mallory Denk bodies in balloon cells in alcoholic hepatitis. Exp Mol Pathol 103:191–199. https://doi.org/10.1016/j.yexmp.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP, Jaeschke H, Ding WX (2014) Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61:617–625. https://doi.org/10.1016/j.jhep.2014.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galluzzi L, Pietrocola F, Bravo‐San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34: 856-880. https://doi.org/https://doi.org/10.15252/embj.201490784

  66. Fu Y, Chung FL (2018) Oxidative stress and hepatocarcinogenesis. Hepatoma Res 4:39. https://doi.org/https://doi.org/10.20517/2394-5079.2018.29

  67. Ciccarone F, Castelli S, Ciriolo MR (2019) Oxidative stress-driven autophagy across onset and therapeutic outcome in hepatocellular carcinoma. Oxid Med Cell Longev 2019:6050123. https://doi.org/10.1155/2019/6050123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin SM, Youle RJ (2012) PINK1-and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799. https://doi.org/10.1242/jcs.093849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R, Billiar TR, Tao WA, Zhang Z (2016) BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem 291:21616–21629. https://doi.org/10.1074/jbc.M116.733410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, Kataoka A, Nukina N, Takahashi R, Chiba T (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27:6002–6011. https://doi.org/10.1038/onc.2008.199

    Article  CAS  PubMed  Google Scholar 

  71. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800. https://doi.org/10.1101/gad.2016211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, DiPaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075. https://doi.org/10.1016/j.cell.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284. https://doi.org/10.1083/jcb.201102031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191. https://doi.org/10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yazdani H, Huang H, Tsung A (2019) Autophagy: Dual response in the development of hepatocellular carcinoma. Cells 8:91. https://doi.org/10.3390/cells8020091

    Article  CAS  PubMed Central  Google Scholar 

  76. Chen C, Lou T (2017) Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 8:46691–46703. https://doi.org/https://doi.org/10.18632/oncotarget.17358

  77. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581. https://doi.org/10.1128/MCB.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946. https://doi.org/10.1038/cdd.2009.16

    Article  CAS  PubMed  Google Scholar 

  79. Decuypere JP, Parys JB, Bultynck G (2012) Regulation of the autophagic Bcl-2/Beclin 1 interaction. Cells 1:284–312. https://doi.org/10.3390/cells1030284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun L, Li T, Wei Q, Zhang Y, Jia X, Wan Z, Han L (2014) Upregulation of BNIP3 mediated by ERK/HIF-1α pathway induces autophagy and contributes to anoikis resistance of hepatocellular carcinoma cells. Future Oncol 10:1387–1398. https://doi.org/10.2217/fon.14.70

    Article  CAS  PubMed  Google Scholar 

  81. Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: Sibling rivalry in hypoxic tumor growth and progression. Nat Rev Cancer 12:9–22. https://doi.org/10.1038/nrc3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N, Brüne B (2010) Roles of hypoxia-inducible factor-1α (HIF-1α) versus HIF-2α in the survival of hepatocellular tumor spheroids. Hepatology 51:2183–2192. https://doi.org/10.1002/hep.23597

    Article  CAS  PubMed  Google Scholar 

  83. Mazure NM, Pouysségur J (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5:868–869. https://doi.org/10.4161/auto.9042

    Article  PubMed  Google Scholar 

  84. Leber B, Lin J, Andrews DW (2007) Embedded together: The life and death consequences of interaction of the Bcl-2 Family with membranes. Apoptosis 12:897–911. https://doi.org/10.1007/s10495-007-0746-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong XF, Liu TQ, Zhi XT, Zou J, Zhong JT, Li T, Mo XL, Zhou W, Guo WW, Liu X, Chen YY, Li MY, Zhong XG, Han YM, Wang ZH, Dong ZR (2018) COX-2/PGE2 axis regulates HIF2a activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res 24:3204–3216. https://doi.org/10.1158/1078-0432.CCR-17-2725

    Article  CAS  PubMed  Google Scholar 

  86. Wu DH, Jia CC, Chen J, Lin ZX, Ruan DY, Li X, Lin Q, Min-Dong MXK, Wan XB, Cheng N, Chen ZH, Xing YF, Wu XY, Wen JY (2014) Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma. Tumour Biol 35:12225–12233. https://doi.org/10.1007/s13277-014-2531-7

    Article  CAS  PubMed  Google Scholar 

  87. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis and poor outcome. Clin Cancer Res 18:370–379. https://doi.org/10.1158/1078-0432.CCR-11-1282

    Article  CAS  PubMed  Google Scholar 

  88. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited - the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535. https://doi.org/10.1002/ijc.26031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18:43–73. https://doi.org/10.1615/critrevoncog.v18.i1-2.40

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim YN, Koo KH, Sung JY, Yun UJ, Kim H (2012) Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012:306879. https://doi.org/10.1155/2012/306879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498. https://doi.org/10.1016/j.bbamcr.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  92. Yang J, Zheng Z, Yan X, Li X, Liu Z, Ma Z (2013) Integration of autophagy and anoikis resistance in solid tumors. Anat Rec 296:1501–1508. https://doi.org/10.1002/ar.22769

    Article  Google Scholar 

  93. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 31:3616–3629. https://doi.org/10.1128/MCB.05164-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B, Zhou J, Qiu SJ, Dai Z, Fan J (2013) Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9:2056–2068. https://doi.org/10.4161/auto.26398

    Article  CAS  PubMed  Google Scholar 

  95. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S (2012) TGF-β - an excellent servant but a bad master. J Transl Med 10:183. https://doi.org/10.1186/1479-5876-10-183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Scandura JM, Boccuni P, Massagué J, Nimer SD (2004) Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci U S A 101:15231–15236. https://doi.org/10.1073/pnas.0406771101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Inman GJ (2011) Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev 21:93–99. https://doi.org/10.1016/j.gde.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  98. Tong H, Yin H, Hossain MA, Wang Y, Wu F, Dong X, Gao S, Zhan K, He W (2019) Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem 120:5118–5127. https://doi.org/10.1002/jcb.27788

    Article  CAS  PubMed  Google Scholar 

  99. Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y, Song Z, Zheng Q, Xiong J (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34:1343–1351. https://doi.org/10.1093/carcin/bgt063

    Article  CAS  PubMed  Google Scholar 

  100. Roche J (2018) The epithelial-to-mesenchymal transition in cancer. Cancers (Basel) 10:52. https://doi.org/10.3390/cancers10020052

    Article  CAS  Google Scholar 

  101. Wang J, Chen L, Li Y, Guan XY (2011) Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. PLoS ONE 6:e24967. https://doi.org/10.1371/journal.pone.0024967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, Jiang GM (2019) Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer 18:101. https://doi.org/10.1186/s12943-019-1030-2

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chen C, Liang QY, Chen HK, Wu PF, Feng ZY, Ma XM, Wu HR, Zhou GQ (2018) DRAM1 regulates the migration and invasion of hepatoblastoma cells via autophagy-EMT pathway. Oncol Lett 16:2427–2433. https://doi.org/10.3892/ol.2018.8937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hu S, Wang L, Zhang X, Wu Y, Yang J, Li J (2018) Autophagy induces transforming growth factor-β-dependent epithelial-mesenchymal transition in hepatocarcinoma cells through cAMP response element binding signalling. J Cell Mol Med 22:5518–5532. https://doi.org/10.1111/jcmm.13825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang Y, Xiong H, Liu D, Hill C, Ertay A, Li J, Zou Y, Miller P, White E, Downward J, Goldin RD, Yuan X, Lu X (2019) Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy 15:886–899. https://doi.org/10.1080/15548627.2019.1569912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhao Z, Zhao J, Xue J, Zhao X, Liu P (2016) Autophagy inhibition promotes epithelial-mesenchymal transition through ROS/HO-1 pathway in ovarian cancer cells. Am J Cancer Res 6:2162–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shaaban S, Negm A, Ibrahim EE, Elrazak AA (2014) Chemotherapeutic agents for the treatment of hepatocellular carcinoma: efficacy and mode of action. Oncol Rev 8:246. https://doi.org/10.4081/oncol.2014.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Riddell IA, Lippard SJ (2018) Cisplatin and oxaliplatin: Our current understanding of their actions. In: Sigel A, Sigel H, Freisinger E, Sigel RKO (ed) Metallo-drugs: Development and action of anticancer agents, De Gruyter, Berlin Munich Boston, pp 1–42. https://doi.org/https://doi.org/10.1515/9783110470734-001

  109. Chen R, Dai RY, Duan CY, Liu YP, Chen SK, Yan DM, Chen CN, Wei M, Li H (2011) Unfolded protein response suppresses cisplatin-induced apoptosis via autophagy regulation in human hepatocellular carcinoma cells. Folia Biol (Praha) 57:87–95

    CAS  Google Scholar 

  110. Du H, Yang W, Chen L, Shi M, Seewoo V, Wang J, Lin A, Liu Z, Qiu W (2012) Role of autophagy in resistance to oxaliplatin in hepatocellular carcinoma cells. Oncol Rep 27:143–150. https://doi.org/10.3892/or.2011.1464

    Article  CAS  PubMed  Google Scholar 

  111. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350. https://doi.org/10.1038/nrc2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou Y, Chen E, Tang Y, Mao J, Shen J, Zheng X, Xie S, Zhang S, Wu Y, Liu H, Zhi X, Ma T, Ni H, Chen J, Chai K, Chen W (2019) miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells. Cell Death Dis 10:843. https://doi.org/10.1038/s41419-019-2053-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jin J, Huang M, Wei HL, Liu GT (2002) Mechanism of 5-fluorouracil required resistance in human hepatocellular carcinoma cell line Bel7402. World J Gastroenterol 8:1029–1034. https://doi.org/10.3748/wjg.v8.i6.1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guo XL, Hu F, Zhang SS, Zhao QD, Zong C, Ye F, Guo SW, Zhang JW, Li R, Wu MC, Wei LX (2014) Inhibition of p53 increases chemosensitivity to 5-FU in nutrient-deprived hepatocarcinoma cells by suppressing autophagy. Cancer Lett 346:278–284. https://doi.org/10.1016/j.canlet.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  115. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390. https://doi.org/10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  116. Fu XT, Song K, Zhou J, Shi YH, Liu WR, Tian MX, Jin L, Shi GM, Gao Q, Ding ZB, Fan J (2018) Autophagy activation contributes to glutathione transferase Mu 1-mediated chemoresistance in hepatocellular carcinoma. Oncol Lett 16:346–352. https://doi.org/10.3892/ol.2018.8667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhai B, Hu F, Jiang X, Xu J, Zhao D, Liu B, Pan S, Dong X, Tan G, Wei Z, Qiao H, Jiang H, Sun X (2014) Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther 13:1589–1598. https://doi.org/10.1158/1535-7163.MCT-13-1043

    Article  CAS  PubMed  Google Scholar 

  118. Zhao D, Zhai B, He C, Tan G, Jiang X, Pan S, Dong X, Wei Z, Ma L, Qiao H, Jiang H, Sun X (2014) Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal 26:1030–1039. https://doi.org/10.1016/j.cellsig.2014.01.026

    Article  CAS  PubMed  Google Scholar 

  119. Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, Liu H, Tian L, Fang X, Meng X, Jiang H, Liu J, Liu L (2013) Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology 57:1847–1857. https://doi.org/10.1002/hep.26224

    Article  CAS  PubMed  Google Scholar 

  120. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, De Toni EN, Wang X (2020) The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 5:87. https://doi.org/10.1038/s41392-020-0187-x

    Article  PubMed  PubMed Central  Google Scholar 

  121. Peng WX, Xiong EM, Ge L, Wan YY, Zhang CL, Du FY, Xu M, Bhat RA, Jin J, Gong AH (2016) Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp Cell Res 340:62–70. https://doi.org/10.1016/j.yexcr.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  122. Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, Jiang H, Wang X, Li X (2013) miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 29:2019–2024. https://doi.org/10.3892/or.2013.2338

    Article  CAS  PubMed  Google Scholar 

  123. Lanza E, Donadon M, Poretti D, Pedicini V, Tramarin M, Roncalli M, Rhee H, Park YN, Torzilli G (2017) Transarterial therapies for hepatocellular carcinoma. Liver Cancer 6:27–33. https://doi.org/10.1159/000449347

    Article  Google Scholar 

  124. Pleguezuelo M, Marelli L, Misseri M, Germani G, Calvaruso V, Xiruochakis E, Manousou P, Burroughs AK (2008) TACE versus TAE as therapy for hepatocellular carcinoma. Expert Rev Anticancer Ther 8:1623–1641. https://doi.org/10.1586/14737140.8.10.1623

    Article  CAS  PubMed  Google Scholar 

  125. Rammohan A, Sathyanesan J, Ramaswami S, Lakshmanan A, Senthil-Kumar P, Srinivasan UP, Ramasamy R, Ravichandran P (2012) Embolization of liver tumors: past, present and future. World J Radiol 4:405–412. https://doi.org/10.4329/wjr.v4.i9.405

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gade TPF, Tucker E, Nakazawa MS, Hunt SJ, Wong W, Krock B, Weber CN, Nadolski GJ, Clark TWI, Soulen MC, Furth EE, Winkler JD, Amaravadi RK, Simon MC (2017) Ischemia induces quiescence and autophagy dependence in hepatocellular carcinoma. Radiology 283:702–710. https://doi.org/10.1148/radiol.2017160728

    Article  PubMed  Google Scholar 

  127. Tao W, Shi JF, Zhang Q, Xue B, Sun YJ, Li CJ (2013) Egr-1 enhances drug resistance of breast cancer by modulating MDR1 expression in a GGPPS-independent manner. Biomed Pharmacother 67:197–202. https://doi.org/10.1016/j.biopha.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  128. Peng WX, Wan YY, Gong AH, Ge L, Jin J, Xu M, Wu CY (2017) Egr-1 regulates irradiation-induced autophagy through Atg4B to promote radioresistance in hepatocellular carcinoma cells. Oncogenesis 6:e292. https://doi.org/10.1038/oncsis.2016.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang Z, Wilkie-Grantham RP, Yanagi T, Shu CW, Matsuzawa SI, Reed JC (2015) ATG4B (Autophagin-1) phosphorylation modulates autophagy. J Biol Chem 290:26549–26561. https://doi.org/10.1074/jbc.M115.658088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang Z, Han W, Sui X, Fang Y, Pan H (2014) Autophagy: a novel therapeutic target for hepatocarcinoma (Review). Oncol Lett 7:1345–1351. https://doi.org/10.3892/ol.2014.1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun T, Liu H, Ming L (2017) Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma. Cell Physiol Biochem 44:716–727. https://doi.org/10.1159/000485285

    Article  PubMed  Google Scholar 

  132. Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, Wang XY, Dai Z, Peng YF, Gu CY, Qiu SJ, Fan J (2011) Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 7:1159–1172. https://doi.org/10.4161/auto.7.10.16818

    Article  CAS  PubMed  Google Scholar 

  133. Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T (2017) Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 18:2574. https://doi.org/10.3390/ijms18122574

    Article  CAS  PubMed Central  Google Scholar 

  134. Nio K, Yamashita T, Kaneko S (2017) The evolving concept of liver cancer stem cells. Mol Cancer 16:4. https://doi.org/10.1186/s12943-016-0572-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yamashita T, Wang XW (2013) Cancer stem cells in the development of liver cancer. J Clin Invest 123:1911–1918. https://doi.org/10.1172/JCI66024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW (2009) EpCAM-positive hepatocellular carcinoma cells are tumor initiating cells with stem/progenitor cell features. Gastroenterology 136:1012–1024. https://doi.org/10.1053/j.gastro.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  137. Terris B, Cavard C, Perret C (2010) EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol 52:280–281. https://doi.org/10.1016/j.jhep.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  138. Ma S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng IOL, Zheng BJ, Guan XY (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556. https://doi.org/10.1053/j.gastro.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  139. Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, Li J (2010) Cancer stem/progenitor cells are highly enriched in CD133 +CD44+ population in hepatocellular carcinoma. Int J Cancer 126:2067–2078. https://doi.org/10.1002/ijc.24868

    Article  CAS  PubMed  Google Scholar 

  140. Yang FZ, Ngai P, Ho DW, Yu WC, Ng MNP, Lau CK, Li MLY, Tam KH, Lam CT, Poon RTP, Fan ST (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47:919–928. https://doi.org/10.1002/hep.22082

    Article  CAS  PubMed  Google Scholar 

  141. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120:3326–3339. https://doi.org/10.1172/JCI42550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Qiu L, Li H, Fu S, Chen X, Lu L (2018) Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol lett 15:2039–2048. https://doi.org/10.3892/ol.2017.7568

    Article  CAS  PubMed  Google Scholar 

  143. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, Katoonizadeh A, Wouters J, van Kempen LC, Durnez A, Verslype C, De Kock J, Rogiers V, van Grunsven LA, Topal B, Pirenne J, Vankelecom H, Nevens F, van den Oord J, Pinzani M, Roskams T (2014) Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63:674–685. https://doi.org/10.1136/gutjnl-2012-304351

    Article  CAS  PubMed  Google Scholar 

  144. Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, Dang H, Greten TF, Davis JL, Zhao Y, Mehta M, Levin Y, Shetty J, Tran B, Budhu A, Wang XW (2018) Single cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatalogy 68:127–140. https://doi.org/10.1002/hep.29778

    Article  Google Scholar 

  145. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296. https://doi.org/10.1016/j.ccr.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850. https://doi.org/10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  147. Weinmaster G, Kopan R (2016) A garden of Notch-ly delights. Development 133:3277–3282. https://doi.org/10.1242/dev.02515

    Article  CAS  Google Scholar 

  148. Gotoh N (2009) Control of stemness by fibroblast growth factor signaling in stem cells and cancer stem cells. Curr Stem Cell Res Ther 4:9–15. https://doi.org/10.2174/157488809787169048

    Article  CAS  PubMed  Google Scholar 

  149. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  150. Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176:2584–2594. https://doi.org/10.2353/ajpath.2010.091064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lau EYT, Ho NPY, Lee TKW (2017) Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int 2017:3714190. https://doi.org/10.1155/2017/3714190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gao Y, Ruan B, Liu W, Wang J, Yang X, Zhang Z, Li X, Duan J, Zhang F, Ding R, Tao K, Dou K (2015) Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget 6:7828–7837. https://doi.org/10.18632/oncotarget.3488

    Article  PubMed  PubMed Central  Google Scholar 

  153. van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H, Mikulits W (2009) Epithelial-mesenchymal transition in hepatocellular carcinoma. Futur Oncol 5:1169–1179. https://doi.org/10.2217/fon.09.91

    Article  Google Scholar 

  154. Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan CL, Skhinas JN, Collot R, Yang J, Harvey K, Johan MZ, Cooper C, Nair R, Herrmann D, McFarland A, Deng N, Ruiz-Borrego M, Rojo F, Trigo JM, Bezares S, Caballero R, Lim E, Timpson P, O’Toole S, Watkins DN, Cox TR, Samuel MS, Martín M, Swarbrick A (2018) Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun 9:2897. https://doi.org/10.1038/s41467-018-05220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dai XM, Yang SL, Zheng XM, Chen GG, Chen J, Zhang T (2018) CD133 expression and α-fetoprotein levels define novel prognostic subtypes of HBV-associated hepatocellular carcinoma: A long-term follow-up analysis. Oncol Lett 15:2985–2991. https://doi.org/10.3892/ol.2017.7704

    Article  CAS  PubMed  Google Scholar 

  156. Yamanaka C, Wada H, Eguchi H, Hatano H, Gotoh K, Noda T, Yamada D, Asaoka T, Kawamoto K, Nagano H, Doki Y, Mori M (2018) Clinical significance of CD13 and epithelial mesenchymal transition (EMT) markers in hepatocellular carcinoma. Jpn J Clin Oncol 48:52–60. https://doi.org/10.1093/jjco/hyx157

    Article  PubMed  Google Scholar 

  157. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134. https://doi.org/10.1038/nm.4409

    Article  CAS  PubMed  Google Scholar 

  158. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454. https://doi.org/10.1093/jnci/djm135

    Article  CAS  PubMed  Google Scholar 

  159. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554. https://doi.org/10.1038/nrc2419

    Article  CAS  PubMed  Google Scholar 

  160. Bai X, Ni J, Beretov J, Graham P, Li Y (2018) Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 69:152–163. https://doi.org/10.1016/j.ctrv.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  161. Sun YL, Patel A, Kumar P, Chen ZS (2012) Role of ABC transporters in cancer chemotherapy. Chin J Cancer 31:51–57. https://doi.org/10.5732/cjc.011.10466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang G, Wang Z, Luo W, Jiao H, Wu J, Jiang C (2013) Expression of potential cancer stem cell marker ABCG2 is associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract 2013:782581. https://doi.org/10.1155/2013/782581

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jia Q, Zhang X, Deng T, Gao J (2013) Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90+CD133+ liver cancer stem cells. Cell Reprogram 15:143–150. https://doi.org/10.1089/cell.2012.0048

    Article  CAS  PubMed  Google Scholar 

  164. Ranji P, T. Salmani Kesejini T, Saeedikhoo S, Alizadeh AM, (2016) Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance. Tumor Biol 37:13059–13075. https://doi.org/10.1007/s13277-016-5294-5

    Article  CAS  Google Scholar 

  165. Vassalli G (2019) Aldehyde dehydrogenases: Not just markers, but functional regulators of stem cells. Stem Cells Int 2019:3904645. https://doi.org/10.1155/2019/3904645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Carnero A, Garcia-Mayea Y, Mir C, Lorente J, RubioLLeonart ITME (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36. https://doi.org/10.1016/j.ctrv.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  167. Tsai LL, Yu CC, Lo JF, Sung WW, Lee H, Chen SL, Chou MY (2012) Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1. J Dent Sci 7:111–117. https://doi.org/10.1016/j.jds.2012.03.006

    Article  Google Scholar 

  168. Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195:417–433. https://doi.org/10.1083/jcb.201103097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61. https://doi.org/10.1186/s13148-016-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Michan S, Sinclair D (2007) Sirtuins in mammals: Insights into their biological function. Biochem J 404:1–13. https://doi.org/10.1042/BJ20070140

    Article  CAS  PubMed  Google Scholar 

  171. Ong ALC, Ramasamy TS (2018) Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 43:64–80. https://doi.org/10.1016/j.arr.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  172. O’Callaghan C, Vassilopoulos A (2017) Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 16:1208–1218. https://doi.org/10.1111/acel.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu T, Liu PY, Marshall GM (2009) The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 69:1702–1705. https://doi.org/10.1158/0008-5472.CAN-08-3365

    Article  CAS  PubMed  Google Scholar 

  174. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, Kim S, Xu X, Zheng Y, Chilton B, Jia R, Zheng ZM, Appella E, Wang XW, Reid T, Deng CX (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14:312–323. https://doi.org/10.1016/j.ccr.2008.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I (2019) SIRT1 in the development and treatment of hepatocellular carcinoma. Front Nutr 6:148. https://doi.org/10.3389/fnut.2019.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen X, Huan H, Liu C, Luo Y, Shen J, Zhuo Y, Zhang Z, Qian C (2019) Deacetylation of β-catenin by SIRT1 regulates self-renewal and oncogenesis of liver cancer stem cells. Cancer Lett 463:1–10. https://doi.org/10.1016/j.canlet.2019.07.021

    Article  CAS  PubMed  Google Scholar 

  177. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213. https://doi.org/10.1101/cshperspect.a011213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X (2003) Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 63:8323–8329

    CAS  PubMed  Google Scholar 

  179. Ning L, Wentworth L, Chen H, Weber SM (2009) Down-regulation of Notch1 signaling inhibits tumor growth in human hepatocellular carcinoma. Am J Transl Res 1:358–366

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu L, Liu C, Zhang Q, Shen J, Zhang H, Shan J, Duan G, Guo D, Chen X, Cheng J, Xu Y, Yang Z, Yao C, Lai M, Qian C (2016) SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology 64:814–827. https://doi.org/10.1002/hep.28690

    Article  CAS  PubMed  Google Scholar 

  181. Zhang S, Xiong X, Sun Y (2020) Functional characterization of SOX2 as an anticancer target. Sig Transduct Target Ther 5:135. https://doi.org/10.1038/s41392-020-00242-3

    Article  CAS  Google Scholar 

  182. Kim HJ, Maiti P, Barrientos A (2017) Mitochondrial ribosomes in cancer. Semin Cancer Biol 47:67–81. https://doi.org/10.1016/j.semcancer.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cheng J, Liu C, Liu L, Chen X, Shan J, Shen J, Zhu W, Qian C (2016) MEK1 signaling promotes self-renewal and tumorigenicity of liver cancer stem cells via maintaining SIRT1 protein stabilization. Oncotarget 7:20597–20611. https://doi.org/10.18632/oncotarget.7972

    Article  PubMed  PubMed Central  Google Scholar 

  184. Pearson G, Robinson F, Gibson TB, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr Rev 22:153–183. https://doi.org/10.1210/edrv.22.2.0428

    Article  CAS  PubMed  Google Scholar 

  185. Mortensen M, Simon AK (2010) Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy 6:423–425. https://doi.org/10.4161/auto.6.3.11528

    Article  PubMed  Google Scholar 

  186. Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–574. https://doi.org/10.1016/j.stem.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  187. Cheng Y, Wang B, Zhou H, Dang S, Jin M, Shi Y, Hao L, Yang Z, Zhang Y (2015) Autophagy is required for the maintenance of liver progenitor cell functionality. Cell Physiol Biochem 36:1163–1174. https://doi.org/10.1159/000430287

    Article  CAS  PubMed  Google Scholar 

  188. Xue F, Hu L, Ge R, Yang L, Liu K, Li Y, Sun Y, Wang K (2016) Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation. Cancer Lett 371:38–47. https://doi.org/10.1016/j.canlet.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  189. Bu Y, Cao D (2012) The origin of cancer stem cells. Front Biosci (Schol Ed) 4:819–830. https://doi.org/10.2741/s302

    Article  Google Scholar 

  190. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S, Lowe SW (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–1267. https://doi.org/10.1016/j.cell.2006.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105:2445–2450. https://doi.org/10.1073/pnas.0705395105

    Article  PubMed  PubMed Central  Google Scholar 

  192. Liu K, Lee J, Kim JY, Wang L, Tian Y, Chan ST, Cho C, Machida K, Chen D, Ou JHJ (2017) Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol Cell 68:281-292.e5. https://doi.org/10.1016/j.molcel.2017.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li J, Hu SB, Wang LY, Zhang X, Zhou X, Yang B, Li JH, Xiong J, Liu N, Li Y, Wu YZ, Zheng QC (2017) Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis. Oncogene 36:6725–6737. https://doi.org/10.1038/onc.2017.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Song YJ, Zhang SS, Guo XL, Sun K, Han ZP, Li R, Zhao QD, Deng WJ, Xie XQ, Zhang JW, Wu MC, Wei LX (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339:70–81. https://doi.org/10.1016/j.canlet.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  195. Li Z, Jiao X, Di Sante G, Ertel A, Casimiro MC, Wang M, Katiyar S, Ju X, Klopfenstein DV, Tozeren A, Dampier W, Chepelev I, Jeltsch A, Pestell RG (2019) Cyclin D1 integrates G9a-mediated histone methylation. Oncogene 38:4232–4249. https://doi.org/10.1038/s41388-019-0723-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zheng N, Wei W, Wang Z (2016) Emerging roles of FGF signaling in hepatocellular carcinoma. Transl Cancer Res 5:1–6

    Article  PubMed  Google Scholar 

  197. Ocker M (2020) Fibroblast growth factor signaling in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: paving the way to hepatocellular carcinoma. World J Gastroenterol 26:279–290. https://doi.org/10.3748/wjg.v26.i3.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T, Stättner S, Bichler C, Kandioler D, Wrba F, Schulte-Hermann R, Holzmann K, Grusch M, Marian B, Berger W, Grasl-Kraupp B (2011) Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 53:854–864. https://doi.org/10.1002/hep.24099

    Article  CAS  PubMed  Google Scholar 

  199. Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, Zhao A, Busuttil RW, Yee H, Stein L, French DM, Finn RS, Lowe SW, Powers S (2011) Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19:347–358. https://doi.org/10.1016/j.ccr.2011.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, Bifulco N, Kim JL, Hodous B, Brooijmans N, Shutes A, Winter C, Lengauer C, Kohl NE, Guzi T (2015) First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov 5:424–437. https://doi.org/10.1158/2159-8290.CD-14-1029

    Article  CAS  PubMed  Google Scholar 

  201. French DM, Lin BC, Wang M, Adams C, Shek T, Hötzel K, Bolon B, Ferrando R, Blackmore C, Schroeder K, Rodriguez LA, Hristopoulos M, Venook R, Ashkenazi A, Desnoyers LR (2012) Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE 7:e36713. https://doi.org/10.1371/journal.pone.0036713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mavila N, James D, Utley S, Cu N, Coblens O, Mak K, Rountree CB, Kahn M, Wang KS (2012) Fibroblast growth factor receptor-mediated activation of AKT-β-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS ONE 7:e50401. https://doi.org/10.1371/journal.pone.0050401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang J, Liu J, Liu L, McKeehan WL, Wang F (2012) The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 8:690–691. https://doi.org/10.4161/auto.19290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cinque L, Forrester A, Bartolomeo R, Svelto M, Venditti R, Montefusco S, Polishchuk E, Nusco E, Rossi A, Medina DL, Polishchuk R, De Matteis MA, Settembre C (2015) FGF signalling regulates bone growth through autophagy. Nature 528:272–275. https://doi.org/10.1038/nature16063

    Article  CAS  PubMed  Google Scholar 

  205. Yuan H, Li ZM, Shao J, Ji WX, Xia W, Lu S (2017) FGF2/FGFR1 regulates autophagy in FGFR1-amplified non-small cell lung cancer cells. J Exp Clin Cancer Res 36:72. https://doi.org/10.1186/s13046-017-0534-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K (2009) Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852. https://doi.org/10.1158/0008-5472.CAN-08-4401

    Article  CAS  PubMed  Google Scholar 

  207. Ma CL, Qiao S, Li YC, Wang XF, Sun RJ, Zhang X, Qian RK, Song SD (2017) TGF-β1 promotes human hepatic carcinoma HepG2 cells invasion by upregulating autophagy. Eur Rev Med Pharmacol Sci 21:2604–2610

    PubMed  Google Scholar 

  208. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ (2009) Notch signaling controls liver development by regulating biliary differentiation. Development 136:1727–1739. https://doi.org/10.1242/dev.029140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zeng J, Jing Y, Shi R, Pan X, Lai F, Liu W, Li R, Gao L, Hou X, Wu M, Wei L (2016) Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle 15:1602–1610. https://doi.org/10.1080/15384101.2016.1181234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies FM, Rubinsztein DC (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:10533. https://doi.org/10.1038/ncomms10533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Vujovic F, Hunter N, Farahani RM (2019) Notch pathway: a bistable inducer of biological noise? Cell Commun Signal 17:133. https://doi.org/10.1186/s12964-019-0453-0

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wang M, Xue L, Cao Q, Lin Y, Ding Y, Yang P, Che L (2009) Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. Neoplasma 56:533–541. https://doi.org/10.4149/neo_2009_06_533

    Article  CAS  PubMed  Google Scholar 

  213. Croquelois A, Blindenbacher A, Terracciano L, Wang X, Langer I, Radtke F, Heim MH (2005) Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 41:487–496. https://doi.org/10.1002/hep.20571

    Article  CAS  PubMed  Google Scholar 

  214. Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, Hazle JD, Elsayes KM (2018) Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 5:61–73. https://doi.org/10.2147/JHC.S156701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Turcios L, Chacon E, Garcia C, Eman P, Cornea V, Jiang J, Spear B, Liu C, Watt DS, Marti F, Gedaly R (2019) Autophagic flux modulation by Wnt/β-catenin pathway inhibition in hepatocellular carcinoma. PLoS One 14:e0212538. https://doi.org/10.1371/journal.pone.0212538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJM, Batson J, Malik K, Paraskeva C, Greenhough A (2013) Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 32:1903–1916. https://doi.org/10.1038/emboj.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fan Q, Yang L, Zhang X, Ma Y, Li Y, Dong L, Zong Z, Hua X, Su D, Li H, Liu J (2018) Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells. J Exp Clin Cancer Res 37:9. https://doi.org/10.1186/s13046-018-0673-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ma Z, Li F, Chen L, Gu T, Zhang Q, Qu Y, Xu M, Cai X, Lu L (2019) Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway. J Mol Histol 50:75–90. https://doi.org/10.1007/s10735-018-9808-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kim JY, Lee HY, Park KK, Choi YK, Nam JS, Hong IS (2016) CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget 7:20395–20409. https://doi.org/10.18632/oncotarget.7954

    Article  PubMed  PubMed Central  Google Scholar 

  220. Bhat P, Kriel J, Shubha Priya B, Basappa SNS, Loos B (2018) Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization. Biochem Pharmacol 147:170–182. https://doi.org/10.1016/j.bcp.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  221. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511. https://doi.org/10.1038/nrd.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Sunway University Postgraduate Degree by Research Scholarship for supporting M. M-.T.W. and H-.Y.C. This work was partly funded by Ministry of Higher Education Malaysia (FRGS/1/2019/SKK08/SYUC/02/1); and Sunway Medical Centre Research Funds (SRC/002/2017/FR and SRC/003/ 2017/FR).

Author information

Authors and Affiliations

Authors

Contributions

SYT, TSR and SCP conceived and designed the analysis, MMTW and HYC wrote the paper, JJB, NAA, ESC and SA reviewed and edited the paper. All authors have read and agreed to the manuscript submission.

Corresponding author

Correspondence to Sin-Yeang Teow.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, M.MT., Chan, HY., Aziz, N.A. et al. Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Mol Biol Rep 48, 3695–3717 (2021). https://doi.org/10.1007/s11033-021-06334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06334-9

Keywords

Navigation