Skip to main content
Log in

Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The potential activities of phthalate esters (PAEs) that interfere with the endocrine system have been focused recently. However, information on modulating the glucocorticoid receptor (GR) of PAEs is scarce. Our aim was to evaluate the agonistic / antagonistic properties of PAEs on human GR. Luciferase reporter gene assay revealed that the tested chemicals displayed no agonistic effects but dicyclohexyl phthalate (DCHP) exerted antagonistic activity in a dose-responsive manner for GR in HeLa cells. The effects of DCHP on dexamethasone (DEX)-induced GR nuclear translocation and gene expression of glucocorticoid-responsive gene expression (G6Pase, PEPCK, FAS, GILZ and MKP-1), as well as protein expression of G6Pase and PEPCK were further examined by RT-qPCR and western blot analysis. DCHP antagonized DEX-induced GR nuclear translocation and suppressed gene expression in both mRNA and protein levels. Furthermore, the results of molecular docking and molecular dynamics simulation showed that DCHP could bind to GR and exhibited potential regulation on this target protein. Collectively, we demonstrate that DCHP may act as a GR antagonist in vitro and is considered to exert endocrine effects via human GR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andrade AJM, Chahoud I (2010) Reproductive toxicity of phthalate esters. Mol Nutr Food Res 54(1):148–157

    Article  CAS  Google Scholar 

  2. Roslev P, Vorkamp K, Aarup J, Frederiksen K, Nielsen PH (2007) Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res 41(5):969–976

    Article  CAS  PubMed  Google Scholar 

  3. Sedha S, Gautam AK, Verma Y, Ahmad R, Kumar S (2015) Determination of in vivo estrogenic potential of di-isobutyl phthalate (DIBP) and di-isononyl phthalate (DINP) in rats. Environ Sci Pollut Res 22(22):18197–18202

    Article  CAS  Google Scholar 

  4. Graham PR (1973) Phthalate ester plasticizers-why and how they are used. Environ Health Perspect 3:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Li T, Zhang T, Xue P, Guan T, Yuan Y, Yu H (2017) Receptor-based fluorescence polarization assay to detect phthalate esters in Chinese spirits. Food Anal Methods 10(5):1293–1300

    Article  Google Scholar 

  6. Zhang J, Xing X, Sun Y, Li Z, Xue P, Wang T, Li T (2016) Characterization of the binding between phthalate esters and mouse PPARα for the development of a fluorescence polarization-based competitive binding assay. Anal Methods 8(4):880–885

    Article  CAS  Google Scholar 

  7. Das MT, Ghosh P, Thakur IS (2014) Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ Pollut 189:118–125

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Tao W, Xu Y, Feng J, Wang F (2014) Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos Environ 87:146–152

    Article  CAS  Google Scholar 

  9. Yang GCC, Yen C-H, Wang C-L (2014) Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. J Hazard Mater 277:53–61

    Article  CAS  PubMed  Google Scholar 

  10. Le Moal J, Sharpe RM, Jorgensen N, Levine H, Jurewicz J, Mendiola J, Swan SH, Virtanen H, Christin-Maitre S, Cordier S, Toppari J, Hanke W, Network H (2016) Toward a multi-country monitoring system of reproductive health in the context of endocrine disrupting chemical exposure. Eur J Public Health 26(1):76–83

    Article  PubMed  Google Scholar 

  11. Kay VR, Bloom MS, Foster WG (2014) Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol 44(6):467–498

    Article  CAS  PubMed  Google Scholar 

  12. Aydoğan Ahbab M, Barlas N (2015) Influence of in utero di-n-hexyl phthalate and dicyclohexyl phthalate on fetal testicular development in rats. Toxicol Lett 233(2):125–137

    Article  PubMed  Google Scholar 

  13. Lv Y, Fang Y, Chen P, Duan Y, Huang T, Ma L, Xie L, Chen X, Chen X, Gao J, Ge R-S (2019) Dicyclohexyl phthalate blocks Leydig cell regeneration in adult rat testis. Toxicology 411:60–70

    Article  CAS  PubMed  Google Scholar 

  14. Sheikh IA (2016) Stereoselectivity and the potential endocrine disrupting activity of di-(2-ethylhexyl)phthalate (DEHP) against human progesterone receptor: a computational perspective. J Appl Toxicol 36(5):741–747

    Article  CAS  PubMed  Google Scholar 

  15. Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    Article  CAS  PubMed  Google Scholar 

  16. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 94(6):557–572

    Article  CAS  Google Scholar 

  17. Hench PS, Kendall EC, Slocumb CH, Polley HF (1950) Effects of cortisone acetate and pituitary acth on rheumatoid arthritis, rheumatic fever and certain other conditions. Arch Intern Med 85(4):545–666

    Article  CAS  Google Scholar 

  18. Kirwan JR, Balint G, Szebenyi B (1999) Anniversary: 50 years of glucocorticoid treatment in rheumatoid arthritis. Rheumatology 38(2):100–102

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhang T, Guan T, Yu H, Li T (2017) In vitro and in silico assessment of the structure-dependent binding of bisphenol analogues to glucocorticoid receptor. Anal Bioanal Chem 409(8):2239–2246

    Article  CAS  PubMed  Google Scholar 

  20. Zhang T, Zhong S, Li T, Zhang J (2020) Saponins as modulators of nuclear receptors. Crit Rev Food Sci Nutr 60(1):94–107

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Liang Y, Zhang J (2020) Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol Res 156:104802

    Article  CAS  PubMed  Google Scholar 

  22. Vandevyver S, Dejager L, Libert C (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13(3):364–374

    Article  CAS  PubMed  Google Scholar 

  23. Lefstin JA, Yamamoto KR (1998) Allosteric effects of DNA on transcriptional regulators. Nature 392:885–888

    Article  CAS  PubMed  Google Scholar 

  24. Zhang T, Liang Y, Zuo P, Yan M, Jing S, Li T, Wang Y, Zhang J, Wei Z (2019) Identification of 20(R, S)-protopanaxadiol and 20(R, S)-protopanaxatriol for potential selective modulation of glucocorticoid receptor. Food Chem Toxicol 131:110642

    Article  CAS  PubMed  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63

    Article  CAS  PubMed  Google Scholar 

  26. Kauppi B, Jakob C, Farnegardh M, Yang J, Ahola H, Alarcon M, Calles K, Engstrom O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M (2003) The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain—RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 278(25):22748–22754

    Article  CAS  PubMed  Google Scholar 

  27. Zhang T, Zhong S, Hou L, Wang Y, Xing X, Guan T, Zhang J, Li T (2020) Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol. J Ginseng Res 44(5):690–696

    Article  PubMed  Google Scholar 

  28. Zhang T, Zhong S, Wang Y, Dong S, Guan T, Hou L, Xing X, Zhang J, Li T (2019) In vitro and in silico perspectives on estrogenicity of tanshinones from Salvia miltiorrhiza. Food Chem 270(1):281–286

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Li T, Wang T, Yuan C, Zhong S, Guan T, Li Z, Wang Y, Yu H, Luo Q, Wang Y, Zhang T (2018) Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations. Arch Toxicol 92:1215–1223

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Wu W, Wang Y, Xing X, Zhong S, Guan T, Zhang T, Hou L, Li T (2018) Estrogen receptor-based fluorescence polarization assay for bisphenol analogues and molecular modeling study of their complexation mechanism. Anal Chim Acta 1032(22):107–113

    Article  CAS  PubMed  Google Scholar 

  31. Sravanthi TV, Sajitha Lulu S, Vino S, Jayasri MA, Mohanapriya A, Manju SL (2017) Synthesis, docking, and evaluation of novel thiazoles for potent antidiabetic activity. Med Chem Res 26:1306–1315

    Article  CAS  Google Scholar 

  32. Chitrala KN, Yeguvapalli S (2014) Computational prediction and analysis of breast cancer targets for 6-methyl-1,3,8-trichlorodibenzofuran. PLoS ONE 9(11):e109185

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 37(20):4543–4553

    Article  CAS  PubMed  Google Scholar 

  34. Sakhi AK, Lillegaard ITL, Voorspoels S, Carlsen MH, Løken EB, Brantsæter AL, Haugen M, Meltzer HM, Thomsen C (2014) Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Environ Int 73:259–269

    Article  CAS  PubMed  Google Scholar 

  35. The Journal of Toxicological Sciencesokazaki H, Takeda S, Matsuo S, Matsumoto M, Furuta E, Kohro-Ikeda E, Aramaki H (2017) Inhibitory modulation of human estrogen receptor α and β activities by dicyclohexyl phthalate in human breast cancer cell lines. J Toxicol Sci 42(4):417–425

    Article  Google Scholar 

  36. Sargis RM, Johnson DN, Choudhury RA, Brady MJ (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 18(7):1283–1288

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Zhang J, Liu R, Gan J, Liu J, Liu W (2016) Endocrine-disrupting effects of pesticides through interference with human glucocorticoid receptor. Environ Sci Technol 50(1):435–443

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, Chu S, Li J, Li J, Zhang Z, Xia C, Heng Y, Zhang M, Hu J, Wei G, Li Y, Chen N (2015) Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol 173:231–240

    Article  CAS  PubMed  Google Scholar 

  39. Van Raalte DH, Ouwens DM, Diamant M (2009) Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 39(2):81–93

    Article  PubMed  Google Scholar 

  40. Yoon J, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C, Granner D, Newgard C, Spiegelman B (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    Article  CAS  PubMed  Google Scholar 

  41. Xu ZX, Stenzel W, Sasic SM, Smart DA, Rooney SA (1993) Glucocorticoid regulation of fatty acid synthase gene expression in fetal rat lung. Am J Physiol 265(2 Pt 1):L140–L147

    CAS  PubMed  Google Scholar 

  42. Schäcke H, Rehwinkel H, Asadullah K, Cato ACB (2006) Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol 15(8):565–573

    Article  PubMed  Google Scholar 

  43. Singh N, Dalal V, Kumar P (2020) Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Mol Simul 46(1):9–21

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31701349 and U19A2035), the Science and Technology Development Project Foundation of Jilin Province (20200403063SF), 2021 the Agricultural Science and Technology Innovation Program of Jilin Province, and Science and technology project of traditional Chinese medicine in Jilin Province (2021100).

Author information

Authors and Affiliations

Authors

Contributions

YL, TL and YS designed and performed the experiments. YL, TL and YW wrote the paper. WH, CL and JC analyzed the data.

Corresponding authors

Correspondence to Tiezhu Li or Yongjun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Y., Sun, Y., Huang, W. et al. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep 48, 3145–3154 (2021). https://doi.org/10.1007/s11033-021-06303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06303-2

Keywords

Navigation