Skip to main content
Log in

PTPN22 gene functional polymorphism (rs2476601) in older adults with frailty syndrome

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The frailty syndrome is a common clinical marker of vulnerability in older adults conducive to an overall decline in inflammatory stress responsiveness; yet little is known about the genetic risk factors for frailty in elderly. Our aim was to investigate the association between the rs2476601 polymorphism in PTPN22 gene and susceptibility to frailty in Mexican older adults. Data included 630 subjects 70 and older from The Coyoacán cohort, classified as frail, pre-frail, and non-frail following Fried’s criteria. Sociodemographic and clinical characteristics were compared between groups at baseline and after a multivariate analysis. The rs2476601 polymorphism was genotyped by TaqMan genotyping assay using real-time PCR and genotype frequencies were determined for each frailty phenotype in all participants and subsets by age range. Genetic association was examined using stratified and interaction analyses adjusting for age, sex and variables selected in the multivariate analysis. Disability for day-life activities, depression and cognitive impairment were associated with the risk of pre-frailty and frailty at baseline and after adjustment. Carrying the T allele increased significantly the risk of frailty in patients 76 and older (OR 5.64, 95% CI 4.112–7.165) and decreased the risk of pre-frailty under no clinical signs of depression (OR 0.53; 95% CI 0.17–1.71). The PTPN22 polymorphism, rs2476601, could be a genetic risk factor for frailty as subject to quality of life. This is the first study analyzing such relationship in Mexican older adults. Confirming these findings requires additional association studies on wider age ranges in populations of older adults with frailty syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soysal P, Stubbs B, Lucato P, Luchini C, Solmi M, Peluso R, Sergi G, Isik AT, Manzato E, Maggi S, Maggio M, Prina AM, Cosco TD, Wu YT, Veronese N (2016) Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev 31:1–8

    CAS  PubMed  Google Scholar 

  2. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381(9868):752–62

    PubMed  Google Scholar 

  3. Evans WJ, Paolisso G, Abbatecola AM, Corsonello A, Bustacchini S, Strollo F, Lattanzio F (2010) Frailty and muscle metabolism dysregulation in the elderly. Biogerontology 11(5):527–536

    CAS  PubMed  Google Scholar 

  4. Manrique-Espinoza B, Salinas-Rodríguez A, Salgado de Snyder N, Moreno-Tamayo K, Gutiérrez-Robledo LM, Avila-Funes JA (2016) Frailty and social vulnerability in Mexican deprived and rural settings. J Aging Health 28(4):740–752

    PubMed  Google Scholar 

  5. Inglés M, Gimeno-Mallench L, Mas-Bargues C, Dromant M, Cruz-Guerrero R, García-García FJ, Rodríguez-Mañas L, Gambini J, Borrás C, Viña J (2018) Identification of single nucleotide polymorphisms related to frailty. Rev Esp Geriatr Gerontol 53(4):202–207

    PubMed  Google Scholar 

  6. Dato S, Montesanto A, Lagani V, Jeune B, Christensen K, Passarino G (2012) Frailty phenotypes in the elderly based on cluster analysis: a longitudinal study of two Danish cohorts. Evidence for a genetic influence on frailty. Age (Dordr) 34(3):571–82

    Google Scholar 

  7. Appay V, Sauce D (2014) Naive T cells: the crux of cellular immune aging? Exp Gerontol 54:90–93

    CAS  PubMed  Google Scholar 

  8. Kovaiou RD, Grubeck-Loebenstein B (2006) Age-associated changes within CD4+ T cells. Immunol Lett 107(1):8–14

    CAS  PubMed  Google Scholar 

  9. Napolioni V, Natali A, Saccucci P, Lucarini N (2011) PTPN22 1858C>T (R620W) functional polymorphism and human longevity. Mol Biol Rep 38(6):4231–4235

    CAS  PubMed  Google Scholar 

  10. Perri V, Pellegrino M, Ceccacci F, Scipioni A, Petrini S, Gianchecchi E, Lo Russo A, De Santis S, Mancini G, Fierabracci A (2017) Use of short interfering RNA delivered by cationic liposomes to enable efficient down-regulation of PTPN22 gene in human T lymphocytes. PLoS ONE 12(4):e0175784

    PubMed  PubMed Central  Google Scholar 

  11. Ramírez-Pérez S, Sánchez-Zuno GA, Chavarría-Buenrostro LE, Montoya-Buelna M, Reyes-Pérez IV, Ramírez-Dueñas MG, Palafox-Sánchez CA, Martínez-Bonilla GE, Muñoz-Valle JF (2019) PTPN22 +788 G>A (R263Q) polymorphism is associated with mRNA expression but it is not a susceptibility marker for rheumatoid arthritis patients from Western Mexico. Biochem Genet 57(3):455–465

    PubMed  Google Scholar 

  12. Torres-Carrillo NM, Ruiz-Noa Y, Martínez-Bonilla GE, Leyva-Torres SD, Torres-Carrillo N, Palafox-Sánchez CA, Navarro-Hernández RE, Rangel-Villalobos H, Oregón-Romero E, Muñoz-Valle JF (2012) The +1858C/T PTPN22 gene polymorphism confers genetic susceptibility to rheumatoid arthritis in Mexican population from the Western Mexico. Immunol Lett 147(1–2):41–46

    CAS  PubMed  Google Scholar 

  13. Vang T, Miletic AV, Bottini N, Mustelin T (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40(6):453–461

    CAS  PubMed  Google Scholar 

  14. Gianchecchi E, Palombi M, Fierabracci A (2013) The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 12(7):717–725

    CAS  PubMed  Google Scholar 

  15. Almeida OP, Norman PE, van Bockxmeer FM, Hankey GJ, Flicker L (2012) CRP 1846G>A polymorphism increases risk of frailty. Maturitas 71(3):261–266

    CAS  PubMed  Google Scholar 

  16. Juárez-Cedillo T, Vargas-Alarcón G, Martínez-Rodríguez N, Juárez-Cedillo E, Fragoso JM, Escobedo-de-la-Peña J (2019) Interleukin 10 gene polymorphisms and frailty syndrome in elderly Mexican people: (Sadem study). Mol Genet Genomic Med 7(9):e918

    PubMed  PubMed Central  Google Scholar 

  17. Liu ZY, Wang ZD, Li LZ, Chu XF, Zhu YS, Shi JM, Xie XJ, Jin L, Wang Y, Wang XF (2016) Association of CRP gene polymorphisms with CRP levels, frailty and co-morbidity in an elderly Chinese population: results from RuLAS. Age Ageing 45(3):360–365

    PubMed  Google Scholar 

  18. Pérez-Suárez TG, Gutiérrez-Robledo LM, Ávila-Funes JA, Acosta JL, Escamilla-Tilch M, Padilla-Gutiérrez JR, Torres-Carrillo N, Torres-Castro S, López-Ortega M, Muñoz-Valle JF, Torres-Carrillo NM (2016) VNTR polymorphisms of the IL-4 and IL-1RN genes and their relationship with frailty syndrome in Mexican community-dwelling elderly. Aging Clin Exp Res 28(5):823–832

    PubMed  Google Scholar 

  19. Ho YY, Matteini AM, Beamer B, Fried L, Xue QL, Arking DE, Chakravarti A, Fallin MD, Walston J (2011) Exploring biologically relevant pathways in frailty. J Gerontol A 66(9):975–979

    Google Scholar 

  20. Moore AZ, Biggs ML, Matteini A, O’Connor A, McGuire S, Beamer BA, Fallin MD, Fried LP, Walston J, Chakravarti A, Arking DE (2010) Polymorphisms in the mitochondrial DNA control region and frailty in older adults. PLoS ONE 5:e11069

    PubMed  PubMed Central  Google Scholar 

  21. Razi S, Cogger VC, Kennerson M, Benson VL, McMahon AC, Blyth FM, Handelsman DJ, Seibel MJ, Hirani V, Naganathan V, Waite L, de Cabo R, Cumming RG, Le Couteur DG (2017) SIRT1 polymorphisms and serum-induced SIRT1 protein expression in aging and frailty: the CHAMP study. J Gerontol A 72(7):870–876

    CAS  Google Scholar 

  22. Matteini AM, Walston JD, Bandeen-Roche K, Arking DE, Allen RH, Fried LP, Chakravarti A, Stabler SP, Fallin MD (2010) Transcobalamin-II variants, decreased vitamin B12 availability and increased risk of frailty. J Nutr Health Aging 14:73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Inglés M, Mas-Bargues C, Gimeno-Mallench L, Cruz-Guerrero R, García-García FJ, Gambini J, Borrás C, Rodríguez-Mañas L, Viña J (2019) Relation between genetic factors and frailty in older adults. J Am Med Dir Assoc 20(11):1451–1457

    PubMed  Google Scholar 

  24. Wilson D, Jackson T, Sapey E, Lord JM (2017) Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev 36:1–10

    PubMed  Google Scholar 

  25. Ruiz-Arregui L, Ávila-Funes JA, Amieva H, Borges-Yáñez SA, Villa-Romero A, Aguilar-Navarro S, Pérez-Zepeda MU, Gutiérrez-Robledo LM, Castrejón-Pérez RC (2013) The Coyoacán Cohort Study: design, methodology, and participants’ characteristics of a Mexican study on nutritional and psychosocial markers of frailty. J Frailty Aging 2(2):68–76

    CAS  PubMed  Google Scholar 

  26. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A 56:M146–M156

    Google Scholar 

  27. Folstein MF, Folstein SE, McHugh PR (1975) ‘“Mini-mental state”’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    CAS  PubMed  Google Scholar 

  28. Katz S, Downs TD, Cash HR, Grotz RC (1970) Progress in development of the index of ADL. Gerontologist 10:20–30

    CAS  PubMed  Google Scholar 

  29. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    CAS  PubMed  Google Scholar 

  30. Proust-Lima C, Philipps V (2018) NormPsy: normalisation of psychometric tests. R package version 1.0.8. https://CRAN.R-project.org/package=NormPsy

  31. Philipps V, Amieva H, Andrieu S, Dufouil C, Berr C, Dartigues J-F, Jacqmin-Gadda H, Proust-Lima C (2014) Normalized MMSE for assessing cognitive change in population-based aging studies. NeuroEpidemiology 43:15–25

    PubMed  Google Scholar 

  32. Fife D (2017) fifer: a biostatisticians toolbox for various activities, including plotting, data cleanup, and data analysis. R package version 1.1. https://CRAN.R-project.org/package=fifer

  33. Peters G (2018) userfriendlyscience: quantitative analysis made accessible. R package version 0.7.2. https://doi.org/10.17605/osf.io/txequ

  34. Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0

  35. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76:887–893

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lydersen S, Fagerland MW, Laake P (2009) Recommended tests for association in 2 x 2 tables. Stat Med 28:1159–1175

    PubMed  Google Scholar 

  37. Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23(5):654–655

    CAS  Google Scholar 

  38. Collino S, Martin FP, Karagounis LG, Horcajada MN, Moco S, Franceschi C, Kussmann M, Offord E (2013) Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mech Ageing Dev 134(11–12):541–547

    PubMed  Google Scholar 

  39. Bucci L, Ostan R, Giampieri E, Cevenini E, Pini E, Scurti M, Vescovini R, Sansoni P, Caruso C, Mari D, Ronchetti F, Borghi MO, Ogliari G, Grossi C, Capri M, Salvioli S, Castellani G, Franceschi C, Monti D (2014) Immune parameters identify Italian centenarians with a longer five-year survival independent of their health and functional status. Exp Gerontol 54:14–20

    CAS  PubMed  Google Scholar 

  40. Compté N, Zouaoui Boudjeltia K, Vanhaeverbeek M, De Breucker S, Tassignon J, Trelcat A, Pepersack T, Goriely S (2013) Frailty in old age is associated with decreased interleukin-12/23 production in response to toll-like receptor ligation. PLoS ONE 8(6):e65325

    PubMed  PubMed Central  Google Scholar 

  41. Chen X, Mao G, Leng SX (2014) Frailty syndrome: an overview. Clin Interv Aging 19(9):433–441

    Google Scholar 

  42. Valdiglesias V, Sánchez-Flores M, Maseda A, Marcos-Pérez D, Millán-Calenti JC, Pásaro E, Lorenzo-López L, Laffon B (2015) Lymphocyte subsets in a population of nonfrail elderly individuals. J Toxicol Environ Health A 78(13–14):790–804

    CAS  PubMed  Google Scholar 

  43. Viña J, Tarazona-Santabalbina FJ, Pérez-Ros P, Martínez-Arnau FM, Borras C, Olaso-Gonzalez G, Salvador-Pascual A, Gomez-Cabrera MC (2016) Biology of frailty: modulation of ageing genes and its importance to prevent age-associated loss of function. Mol Aspects Med 50:88–108

    PubMed  Google Scholar 

  44. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338

    CAS  PubMed  Google Scholar 

  45. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O et al (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71:1381–1391. https://doi.org/10.1001/jamapsychiatry.2014.1611

    Article  PubMed  Google Scholar 

  46. Kojima M, Kojima T, Suzuki S, Oguchi T, Oba M, Tsuchiya H et al (2009) Depression, inflammation, and pain in patients with rheumatoid arthritis. Arthritis Care Res 61:1018–1024. https://doi.org/10.1002/art.24647

    Article  Google Scholar 

  47. Burn GL, Svensson L, Sanchez-Blanco C et al (2011) Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 585:3689–3698

    CAS  PubMed  Google Scholar 

  48. Criswell LA, Pfeiffer KA, Lum RF et al (2005) Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76:561–571

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maydych V (2019) The interplay between stress, inflammation, and emotional attention: relevance for depression. Front Neurosci 13:384. https://doi.org/10.3389/fnins.2019.00384

    Article  PubMed  PubMed Central  Google Scholar 

  50. Galvani G, Fousteri G (2017) PTPN22 and islet-specific autoimmunity: what have the mouse models taught us? World J Diabetes 8(7):330–336

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by funding from Universidad de Guadalajara-ProSNI 2018, assigned to Nora Magdalena Torres-Carrillo, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Magdalena Torres-Carrillo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

This study was performed in accordance with Declaration of Helsinki ethics guidelines, and informed consent was obtained from each of its participants. Protocol and informed consent forms were approved by the Ethical Committees of the Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ) and the Instituto Nacional de Geriatría in Mexico City.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaneda-Bueno, R., Torres-Carrillo, N., Ávila-Funes, J.A. et al. PTPN22 gene functional polymorphism (rs2476601) in older adults with frailty syndrome. Mol Biol Rep 48, 1193–1204 (2021). https://doi.org/10.1007/s11033-021-06212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06212-4

Keywords

Navigation