Abstract
For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.
Graphic abstract
Similar content being viewed by others
Abbreviations
- AGE:
-
Advanced glycation end products
- DM:
-
Diabetic mellitus
- DN:
-
Diabetic neuropathy
- DPN:
-
Diabetic peripheral neuropathy
- DSPN:
-
Diabetic sensory poly neuropathy
- ELK-1:
-
ETS transcription factor
- eNOs:
-
Endothelial NO synthase
- ERK:
-
Extracellular receptor kinase
- FAK:
-
Focal adhesion kinase
- FGF2:
-
Fibroblast growth factor
- GRB:
-
Growth factor receptor bound protein
- ICAM:
-
Inter-cellular adhesion molecule
- IGF:
-
Insulin-like growth factor
- IRS:
-
Insulin receptor substrate
- MAPK:
-
Mitogen activated protein kinase
- MER:
-
Proto oncogene
- MMP:
-
Matrix metallopeptidases
- NCV:
-
Nerve conduction velocity
- NF-kb:
-
Nuclear factor kappa beta
- NGF:
-
Nerve growth factor
- PARP:
-
Poly (ADP-ribose) polymerase
- PDGFR:
-
Platelet-derived growth factor receptor
- PIGF:
-
Placental growth factor
- RAF-1:
-
Rapidly accelerated fibrosarcoma
- RAGE:
-
Receptor for advanced glycation end products
- RAS:
-
Term comes from Rat Sarcoma
- ROS:
-
Reactive oxygen species
- SOS:
-
Son of sevenless
- Src:
-
Oncoprtotein named by the short form of ‘sarcoma’
- SRF:
-
Serum response factor
- TGFb:
-
Transforming growth factor beta
- TIMP:
-
Tissue inhibitor of metalloproteinase
- TNF-a:
-
Tumor necrosis factor alpha
- uPA-uPAR:
-
Urokinase type plasminogen activator and receptor
- VEGF:
-
Vascular endothelial growth factor
References
Malik R (2019) Diabetic neuropathy: a focus on small fibres. Diabetes/Metab Res Rev 36:e3255
Pop-Busui R, Boulton A, Feldman E, Bril V, Freeman R, Malik R et al (2016) Diabetic neuropathy: a position Statement by the American Diabetes Association. Diabetes Care 40(1):136–154
Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci 1(2):5–8
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM (2017) Diabetic microvascular disease: an Endocrine Society Scientific Statement. J Clin Endocrinol Metab 102(12):4343–4410. https://doi.org/10.1210/jc.2017-01922
Tahergorabi Z, Khazaei M (2012) Imbalance of angiogenesis in diabetic complications: the mechanisms. Int J Prev Med 3(12):827–838. https://doi.org/10.4103/2008-7802.104853
Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T (2020) Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):110–116
Jin HY, Lee KA, Kim SY, Park JH, Baek HS, Park TS (2010) A case of diabetic neuropathy combined with Guillain-Barre syndrome. Korean J Intern Med 25(2):217–220. https://doi.org/10.3904/kjim.2010.25.2.217
Singh R, Rao H, Singh T (2020) Neuropathic pain in diabetes mellitus: challenges and future trends. Obes Med 18:100215
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V (2019) Diabetic Neuropathy Nat Rev Dis Primers 5(1):42. https://doi.org/10.1038/s41572-019-0097-9
Volmer-Thole M, Lobmann R (2016) Neuropathy and diabetic foot syndrome. Int J Mol Sci 17(6):917. https://doi.org/10.3390/ijms17060917
Kasznicki J (2014) Advances in the diagnosis and management of diabetic distal symmetric polyneuropathy. Arch Med Sci 10(2):345–354. https://doi.org/10.5114/aoms.2014.42588
Remolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F et al (2012) The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res 2012:1–8
Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 73(10):1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064
Wang Z, Yang J, Qi J, Jin Y, Tong L (2020) Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc Res 131:104012
Ramasamy R, Yan S, Schmidt A (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243(1):88–102
Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18(7):1419. https://doi.org/10.3390/ijms18071419
Shen Y, Ding FH, Dai Y, Wang XQ, Zhang RY, Lu L, Shen WF (2018) Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol 17(1):26. https://doi.org/10.1186/s12933-018-0671-6
Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654
Font MA, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. CurrCardiol Rev 6(3):238–244. https://doi.org/10.2174/157340310791658802
Tehrani KHN (2018) A study of nerve conduction velocity in diabetic patients and its relationship with tendon reflexes (T-Reflex). Open Access Maced J Med Sci 6(6):1072–1076. https://doi.org/10.3889/oamjms.2018.262
Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. https://doi.org/10.4196/kjpp.2014.18.1.1
Mignatti P, Rifkin DB (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49(1–3):117–137. https://doi.org/10.1159/000468621
Nardi GM, Ferrara E, Converti I, Cesarano F, Scacco S, Grassi R, Gnoni A, Grassi FR, Rapone B (2020) Does diabetes induce the Vascular Endothelial Growth Factor (VEGF) Expression in periodontal tissues? A systematic review. Int J Environ Res Public Health 17(8):2765. https://doi.org/10.3390/ijerph17082765
Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904
Schultz GS, Chin GA, Moldawer L et al (2011) Principles of wound healing. In: Fitridge R, Thompson M (eds) Mechanisms of vascular disease: a reference book for vascular specialists. University of Adelaide Press, Adelaide
Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610. https://doi.org/10.1007/s12325-017-0478-y
Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153(1):13–19. https://doi.org/10.1093/jb/mvs136
Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. https://doi.org/10.1177/1947601911408079
Shibuya M (2011) Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031
Bowler E, Oltean S (2019) Alternative splicing in angiogenesis. Int J Mol Sci 20(9):2067. https://doi.org/10.3390/ijms20092067
Bhisitkul RB (2006) Vascular endothelial growth factor biology: clinical implications for ocular treatments. Br J Ophthalmol 90(12):1542–1547. https://doi.org/10.1136/bjo.2006.098426
Ruan GX, Kazlauskas A (2012) Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J 31(7):1692–1703. https://doi.org/10.1038/emboj.2012.21
Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266. https://doi.org/10.1002/wdev.176
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L (2020) FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 5(1):181. https://doi.org/10.1038/s41392-020-00222-7
Zhou HX, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118(4):1691–1741. https://doi.org/10.1021/acs.chemrev.7b00305
Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142. https://doi.org/10.4061/2010/218142
Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21(4):267–273. https://doi.org/10.1097/PPO.0000000000000138
Salomon D (2014) Transforming growth factor β in cancer: Janus, the two-faced god. J Natl Cancer Inst. 106(2):djt441. https://doi.org/10.1093/jnci/djt441
Song B, Estrada KD, Lyons KM (2009) Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 20(5–6):379–388. https://doi.org/10.1016/j.cytogfr.2009.10.010
Cimpean AM, Seclaman E, Ceauşu R, Gaje P, Feflea S, Anghel A, Raica M, Ribatti D (2010) VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin Exp Med 10(3):169–172. https://doi.org/10.1007/s10238-009-0085-6
Chang AS, Hathaway CK, Smithies O, Kakoki M (2016) Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 310(8):F689–F696. https://doi.org/10.1152/ajprenal.00502.2015
Mowla SN, Perkins ND, Jat PS (2013) Friend or foe: emerging role of nuclear factor kappa-light-chain-enhancer of activated B cells in cell senescence. Oncol Targets Ther 6:1221–1229. https://doi.org/10.2147/OTT.S36160
Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23
Savinova OV, Hoffmann A, Ghosh G (2009) The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell 34(5):591–602. https://doi.org/10.1016/j.molcel.2009.04.033
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA (2019) Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 10:85. https://doi.org/10.3389/fimmu.2019.00085
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q (2018) Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 11:2063–2073. https://doi.org/10.2147/OTT.S161109
Chen J, Chen ZJ (2013) Regulation of NF-κB by ubiquitination. Curr Opin Immunol 25(1):4–12. https://doi.org/10.1016/j.coi.2012.12.005
Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10
Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13(10):1272–1279. https://doi.org/10.1038/ncb2324
Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, Houghton PJ, Guttridge DC (2018) Classical NF-κB metabolically reprograms sarcoma cells through regulation of hexokinase 2. Front Oncol 8:104. https://doi.org/10.3389/fonc.2018.00104
Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875. https://doi.org/10.1101/cshperspect.a001875
Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11(8):1000–1017. https://doi.org/10.2174/138945010791591395
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD (2019) Pancreatic tumor microenvironment modulation by EphB4-ephrinB2 inhibition and radiation combination. Clin Cancer Res 25(11):3352–3365. https://doi.org/10.1158/1078-0432.CCR-18-2811
Adair TH, Montani JP (2010) Angiogenesis. San Rafael (CA): Morgan & Claypool Life Sciences. Chapter1, overview of angiogenesis. https://www.ncbi.nlm.nih.gov/books/NBK53238/
Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J, Kitajewski J (2011) Notch signaling in developmental and tumor angiogenesis. Genes Cancer 2(12):1106–1116. https://doi.org/10.1177/1947601911423030
Au PY, Martin N, Chau H, Moemeni B, Chia M, Liu FF, Minden M, Yeh WC (2005) The oncogene PDGF-B provides a key switch from cell death to survival induced by TNF. Oncogene 24(19):3196–3205. https://doi.org/10.1038/sj.onc.1208516
Cantatore FP, Maruotti N, Corrado A, Ribatti D (2017) Anti-angiogenic effects of biotechnological therapies in rheumatic diseases. Biologics 11:123–128. https://doi.org/10.2147/BTT.S143674
Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S (2015) Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 89(8):1209–1226. https://doi.org/10.1007/s00204-015-1520-y
Kashihara N, Haruna Y, Kondeti VK, Kanwar YS (2010) Oxidative stress in diabetic nephropathy. Curr Med Chem 17(34):4256–4269. https://doi.org/10.2174/092986710793348581
Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J, Serrano M (2016) G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 7:10894. https://doi.org/10.1038/ncomms10894
Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87. https://doi.org/10.3389/fphar.2012.00087
Martin A, Komada M, Sane D (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23:117–145. https://doi.org/10.1002/med.10024
Huynh J, Yamada J, Beauharnais C, Wenger JB, Thadhani RI, Wexler D, Roberts DJ, Bentley-Lewis R (2015) Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta 36(10):1161–1166. https://doi.org/10.1016/j.placenta.2015.08.004
Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413. https://doi.org/10.1089/ars.2014.5851
Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP (2009) Crystal structure of human collagen XVIII trimerization domain: a novel collagen trimerization fold. J Mol Biol 392(3):787–802. https://doi.org/10.1016/j.jmb.2009.07.057
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT (2015) Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 1850(12):2422–2438. https://doi.org/10.1016/j.bbagen.2015.09.007
Arseni L, Lombardi A, Orioli D (2018) From structure to phenotype: impact of collagen alterations on human health. Int J Mol Sci 19(5):1407. https://doi.org/10.3390/ijms19051407
Ehtesham S, Sariri R, Eidi A, Hosseinkhani S (2018) Effect of disulfide bond incorporation on the structure and activity of endostatin peptide. Biochemistry 83(11):1388–1398. https://doi.org/10.1134/S0006297918110093
Fujiki H, Watanabe T, Suganuma M (2014) Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol 140:689–699. https://doi.org/10.1007/s00432-014-1587-5
Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 80(2):51–60
Ye W, Liu R, Pan C et al (2014) Multicenter randomized phase 2 clinical trial of a recombinant human endostatin adenovirus in patients with advanced head and neck carcinoma. Mol Ther 22(6):1221–1229. https://doi.org/10.1038/mt.2014.53
Chetty C, Lakka SS, Bhoopathi P, Rao JS (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081–1095. https://doi.org/10.1002/ijc.25134
Zhou S, Zuo L, He X, Pi J, Jin J, Shi Y (2018) Efficacy and safety of rh-endostatin (Endostar) combined with pemetrexed/cisplatin followed by rh-endostatin plus pemetrexed maintenance in non-small cell lung cancer: a retrospective comparison with standard chemotherapy. Thorac Cancer 9(11):1354–1360. https://doi.org/10.1111/1759-7714.12827
Tanabe K, Maeshima Y, Sato Y, Wada J (2017) Antiangiogenic therapy for diabetic nephropathy. Biomed Res Int 2017:5724069. https://doi.org/10.1155/2017/5724069
Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175. https://doi.org/10.1097/BCR.0b013e3181c7ed82
Alameddine HS, Morgan JE (2016) Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles. J Neuromuscul Dis 3(4):455–473. https://doi.org/10.3233/JND-160183
Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:756078. https://doi.org/10.1155/2014/756078
Kowluru RA, Zhong Q, Santos JM (2012) Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert OpinInvestig Drugs 21(6):797–805. https://doi.org/10.1517/13543784.2012.681043
Benezra R, Rafii S, Lyden D (2001) The Id proteins and angiogenesis. Oncogene 20(58):8334–8341. https://doi.org/10.1038/sj.onc.1205160
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 35:S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006
Barot M, Gokulgandhi MR, Patel S, Mitra AK (2013) Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 5(3):301–314. https://doi.org/10.4155/fmc.12.206
Nair R, Teo WS, Mittal V, Swarbrick A (2014) ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther 22(8):1407–1415. https://doi.org/10.1038/mt.2014.83
Renaud SJ, Kubota K, Rumi MA, Soares MJ (2014) The FOS transcription factor family differentially controls trophoblast migration and invasion. J Biol Chem 289(8):5025–5039. https://doi.org/10.1074/jbc.M113.523746
Abdollahi A, Hahnfeldt P, Maercker C, Gröne H, Debus J, Ansorge W, Folkman J, Hlatky L, Huber P (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13(5):649–663
Gee E, Milkiewicz M, Haas TL (2010) p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol 222(1):120–126. https://doi.org/10.1002/jcp.21924
Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246(1):36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x
Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172. https://doi.org/10.1111/j.1600-065X.2009.00782.x
Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, Vita G (2011) Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol 30(1):16–23
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY (2017) Hypoxia-inducible factors and cancer. Curr Sleep Med Rep 3(1):1–10. https://doi.org/10.1007/s40675-017-0062-7
Ikeda T, Sun L, Tsuruoka N, Ishigaki Y, Yoshitomi Y, Yoshitake Y, Yonekura H (2011) Hypoxia down-regulates sFlt-1 (sVEGFR-1) expression in human microvascular endothelial cells by a mechanism involving mRNA alternative processing. Biochem J 436(2):399–407. https://doi.org/10.1042/BJ20101490
Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC (2019) Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res 2019:8562408. https://doi.org/10.1155/2019/8562408
Chen X, Jin R, Chen R, Huang Z (2018) Complementary action of CXCL1 and CXCL8 in pathogenesis of gastric carcinoma. Int J Clin Exp Pathol 11(2):1036–1045
Tandle A, Blazer DG, Libutti SK (2004) Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2:22. https://doi.org/10.1186/1479-5876-2-22
Li K, Shi M, Qin S (2018) Current status and study progress of recombinant human endostatin in cancer treatment. Oncol Ther 6(1):21–43. https://doi.org/10.1007/s40487-017-0055-1
Wang R, Qin S, Chen Y, Li Y, Chen C, Wang Z, Zheng R, Wu Q (2012) Enhanced anti-tumor and anti-angiogenic effects of metronomic cyclophosphamide combined with Endostar in a xenograft model of human lung cancer. Oncol Rep 28(2):439–445. https://doi.org/10.3892/or.2012.1828
Poluzzi C, Iozzo RV, Schaefer L (2016) Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 97:156–173. https://doi.org/10.1016/j.addr.2015.10.012
Funding
The present article did not receive any funding.
Author information
Authors and Affiliations
Contributions
TM and TB: Conceived the idea and wrote the first draft; AS and SB: Review of literature and figure work; HS: Data compilation; SB: Proof Read.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mukherjee, T., Behl, T., Sehgal, A. et al. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 48, 1819–1836 (2021). https://doi.org/10.1007/s11033-021-06205-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-021-06205-3