Skip to main content

Advertisement

Log in

Exploring the molecular role of endostatin in diabetic neuropathy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end products

DM:

Diabetic mellitus

DN:

Diabetic neuropathy

DPN:

Diabetic peripheral neuropathy

DSPN:

Diabetic sensory poly neuropathy

ELK-1:

ETS transcription factor

eNOs:

Endothelial NO synthase

ERK:

Extracellular receptor kinase

FAK:

Focal adhesion kinase

FGF2:

Fibroblast growth factor

GRB:

Growth factor receptor bound protein

ICAM:

Inter-cellular adhesion molecule

IGF:

Insulin-like growth factor

IRS:

Insulin receptor substrate

MAPK:

Mitogen activated protein kinase

MER:

Proto oncogene

MMP:

Matrix metallopeptidases

NCV:

Nerve conduction velocity

NF-kb:

Nuclear factor kappa beta

NGF:

Nerve growth factor

PARP:

Poly (ADP-ribose) polymerase

PDGFR:

Platelet-derived growth factor receptor

PIGF:

Placental growth factor

RAF-1:

Rapidly accelerated fibrosarcoma

RAGE:

Receptor for advanced glycation end products

RAS:

Term comes from Rat Sarcoma

ROS:

Reactive oxygen species

SOS:

Son of sevenless

Src:

Oncoprtotein named by the short form of ‘sarcoma’

SRF:

Serum response factor

TGFb:

Transforming growth factor beta

TIMP:

Tissue inhibitor of metalloproteinase

TNF-a:

Tumor necrosis factor alpha

uPA-uPAR:

Urokinase type plasminogen activator and receptor

VEGF:

Vascular endothelial growth factor

References

  1. Malik R (2019) Diabetic neuropathy: a focus on small fibres. Diabetes/Metab Res Rev 36:e3255

    Google Scholar 

  2. Pop-Busui R, Boulton A, Feldman E, Bril V, Freeman R, Malik R et al (2016) Diabetic neuropathy: a position Statement by the American Diabetes Association. Diabetes Care 40(1):136–154

    Article  PubMed Central  Google Scholar 

  3. Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci 1(2):5–8

    Google Scholar 

  4. Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM (2017) Diabetic microvascular disease: an Endocrine Society Scientific Statement. J Clin Endocrinol Metab 102(12):4343–4410. https://doi.org/10.1210/jc.2017-01922

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tahergorabi Z, Khazaei M (2012) Imbalance of angiogenesis in diabetic complications: the mechanisms. Int J Prev Med 3(12):827–838. https://doi.org/10.4103/2008-7802.104853

    Article  PubMed  PubMed Central  Google Scholar 

  6. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T (2020) Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):110–116

    Article  CAS  PubMed  Google Scholar 

  7. Jin HY, Lee KA, Kim SY, Park JH, Baek HS, Park TS (2010) A case of diabetic neuropathy combined with Guillain-Barre syndrome. Korean J Intern Med 25(2):217–220. https://doi.org/10.3904/kjim.2010.25.2.217

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh R, Rao H, Singh T (2020) Neuropathic pain in diabetes mellitus: challenges and future trends. Obes Med 18:100215

    Article  Google Scholar 

  9. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V (2019) Diabetic Neuropathy Nat Rev Dis Primers 5(1):42. https://doi.org/10.1038/s41572-019-0097-9

    Article  Google Scholar 

  10. Volmer-Thole M, Lobmann R (2016) Neuropathy and diabetic foot syndrome. Int J Mol Sci 17(6):917. https://doi.org/10.3390/ijms17060917

    Article  CAS  PubMed Central  Google Scholar 

  11. Kasznicki J (2014) Advances in the diagnosis and management of diabetic distal symmetric polyneuropathy. Arch Med Sci 10(2):345–354. https://doi.org/10.5114/aoms.2014.42588

    Article  PubMed  PubMed Central  Google Scholar 

  12. Remolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F et al (2012) The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res 2012:1–8

    Article  Google Scholar 

  13. Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 73(10):1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Yang J, Qi J, Jin Y, Tong L (2020) Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc Res 131:104012

    Article  CAS  PubMed  Google Scholar 

  15. Ramasamy R, Yan S, Schmidt A (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243(1):88–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18(7):1419. https://doi.org/10.3390/ijms18071419

    Article  CAS  PubMed Central  Google Scholar 

  17. Shen Y, Ding FH, Dai Y, Wang XQ, Zhang RY, Lu L, Shen WF (2018) Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol 17(1):26. https://doi.org/10.1186/s12933-018-0671-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Font MA, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. CurrCardiol Rev 6(3):238–244. https://doi.org/10.2174/157340310791658802

    Article  CAS  Google Scholar 

  20. Tehrani KHN (2018) A study of nerve conduction velocity in diabetic patients and its relationship with tendon reflexes (T-Reflex). Open Access Maced J Med Sci 6(6):1072–1076. https://doi.org/10.3889/oamjms.2018.262

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mignatti P, Rifkin DB (1996) Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein 49(1–3):117–137. https://doi.org/10.1159/000468621

    Article  CAS  PubMed  Google Scholar 

  23. Nardi GM, Ferrara E, Converti I, Cesarano F, Scacco S, Grassi R, Gnoni A, Grassi FR, Rapone B (2020) Does diabetes induce the Vascular Endothelial Growth Factor (VEGF) Expression in periodontal tissues? A systematic review. Int J Environ Res Public Health 17(8):2765. https://doi.org/10.3390/ijerph17082765

    Article  CAS  PubMed Central  Google Scholar 

  24. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schultz GS, Chin GA, Moldawer L et al (2011) Principles of wound healing. In: Fitridge R, Thompson M (eds) Mechanisms of vascular disease: a reference book for vascular specialists. University of Adelaide Press, Adelaide

    Google Scholar 

  26. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610. https://doi.org/10.1007/s12325-017-0478-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153(1):13–19. https://doi.org/10.1093/jb/mvs136

    Article  CAS  PubMed  Google Scholar 

  28. Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. https://doi.org/10.1177/1947601911408079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shibuya M (2011) Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowler E, Oltean S (2019) Alternative splicing in angiogenesis. Int J Mol Sci 20(9):2067. https://doi.org/10.3390/ijms20092067

    Article  CAS  PubMed Central  Google Scholar 

  31. Bhisitkul RB (2006) Vascular endothelial growth factor biology: clinical implications for ocular treatments. Br J Ophthalmol 90(12):1542–1547. https://doi.org/10.1136/bjo.2006.098426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruan GX, Kazlauskas A (2012) Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J 31(7):1692–1703. https://doi.org/10.1038/emboj.2012.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266. https://doi.org/10.1002/wdev.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L (2020) FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 5(1):181. https://doi.org/10.1038/s41392-020-00222-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou HX, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118(4):1691–1741. https://doi.org/10.1021/acs.chemrev.7b00305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:218142. https://doi.org/10.4061/2010/218142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21(4):267–273. https://doi.org/10.1097/PPO.0000000000000138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salomon D (2014) Transforming growth factor β in cancer: Janus, the two-faced god. J Natl Cancer Inst. 106(2):djt441. https://doi.org/10.1093/jnci/djt441

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song B, Estrada KD, Lyons KM (2009) Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev 20(5–6):379–388. https://doi.org/10.1016/j.cytogfr.2009.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cimpean AM, Seclaman E, Ceauşu R, Gaje P, Feflea S, Anghel A, Raica M, Ribatti D (2010) VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin Exp Med 10(3):169–172. https://doi.org/10.1007/s10238-009-0085-6

    Article  CAS  PubMed  Google Scholar 

  41. Chang AS, Hathaway CK, Smithies O, Kakoki M (2016) Transforming growth factor-β1 and diabetic nephropathy. Am J Physiol Renal Physiol 310(8):F689–F696. https://doi.org/10.1152/ajprenal.00502.2015

    Article  CAS  PubMed  Google Scholar 

  42. Mowla SN, Perkins ND, Jat PS (2013) Friend or foe: emerging role of nuclear factor kappa-light-chain-enhancer of activated B cells in cell senescence. Oncol Targets Ther 6:1221–1229. https://doi.org/10.2147/OTT.S36160

    Article  CAS  Google Scholar 

  43. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  44. Savinova OV, Hoffmann A, Ghosh G (2009) The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell 34(5):591–602. https://doi.org/10.1016/j.molcel.2009.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA (2019) Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 10:85. https://doi.org/10.3389/fimmu.2019.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q (2018) Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 11:2063–2073. https://doi.org/10.2147/OTT.S161109

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Chen ZJ (2013) Regulation of NF-κB by ubiquitination. Curr Opin Immunol 25(1):4–12. https://doi.org/10.1016/j.coi.2012.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13(10):1272–1279. https://doi.org/10.1038/ncb2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, Houghton PJ, Guttridge DC (2018) Classical NF-κB metabolically reprograms sarcoma cells through regulation of hexokinase 2. Front Oncol 8:104. https://doi.org/10.3389/fonc.2018.00104

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875. https://doi.org/10.1101/cshperspect.a001875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11(8):1000–1017. https://doi.org/10.2174/138945010791591395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD (2019) Pancreatic tumor microenvironment modulation by EphB4-ephrinB2 inhibition and radiation combination. Clin Cancer Res 25(11):3352–3365. https://doi.org/10.1158/1078-0432.CCR-18-2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adair TH, Montani JP (2010) Angiogenesis. San Rafael (CA): Morgan & Claypool Life Sciences. Chapter1, overview of angiogenesis. https://www.ncbi.nlm.nih.gov/books/NBK53238/

  55. Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J, Kitajewski J (2011) Notch signaling in developmental and tumor angiogenesis. Genes Cancer 2(12):1106–1116. https://doi.org/10.1177/1947601911423030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Au PY, Martin N, Chau H, Moemeni B, Chia M, Liu FF, Minden M, Yeh WC (2005) The oncogene PDGF-B provides a key switch from cell death to survival induced by TNF. Oncogene 24(19):3196–3205. https://doi.org/10.1038/sj.onc.1208516

    Article  CAS  PubMed  Google Scholar 

  57. Cantatore FP, Maruotti N, Corrado A, Ribatti D (2017) Anti-angiogenic effects of biotechnological therapies in rheumatic diseases. Biologics 11:123–128. https://doi.org/10.2147/BTT.S143674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S (2015) Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 89(8):1209–1226. https://doi.org/10.1007/s00204-015-1520-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kashihara N, Haruna Y, Kondeti VK, Kanwar YS (2010) Oxidative stress in diabetic nephropathy. Curr Med Chem 17(34):4256–4269. https://doi.org/10.2174/092986710793348581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J, Serrano M (2016) G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 7:10894. https://doi.org/10.1038/ncomms10894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87. https://doi.org/10.3389/fphar.2012.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin A, Komada M, Sane D (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23:117–145. https://doi.org/10.1002/med.10024

    Article  CAS  PubMed  Google Scholar 

  63. Huynh J, Yamada J, Beauharnais C, Wenger JB, Thadhani RI, Wexler D, Roberts DJ, Bentley-Lewis R (2015) Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta 36(10):1161–1166. https://doi.org/10.1016/j.placenta.2015.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413. https://doi.org/10.1089/ars.2014.5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP (2009) Crystal structure of human collagen XVIII trimerization domain: a novel collagen trimerization fold. J Mol Biol 392(3):787–802. https://doi.org/10.1016/j.jmb.2009.07.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT (2015) Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 1850(12):2422–2438. https://doi.org/10.1016/j.bbagen.2015.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arseni L, Lombardi A, Orioli D (2018) From structure to phenotype: impact of collagen alterations on human health. Int J Mol Sci 19(5):1407. https://doi.org/10.3390/ijms19051407

    Article  CAS  PubMed Central  Google Scholar 

  68. Ehtesham S, Sariri R, Eidi A, Hosseinkhani S (2018) Effect of disulfide bond incorporation on the structure and activity of endostatin peptide. Biochemistry 83(11):1388–1398. https://doi.org/10.1134/S0006297918110093

    Article  CAS  PubMed  Google Scholar 

  69. Fujiki H, Watanabe T, Suganuma M (2014) Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol 140:689–699. https://doi.org/10.1007/s00432-014-1587-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 80(2):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye W, Liu R, Pan C et al (2014) Multicenter randomized phase 2 clinical trial of a recombinant human endostatin adenovirus in patients with advanced head and neck carcinoma. Mol Ther 22(6):1221–1229. https://doi.org/10.1038/mt.2014.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chetty C, Lakka SS, Bhoopathi P, Rao JS (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081–1095. https://doi.org/10.1002/ijc.25134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou S, Zuo L, He X, Pi J, Jin J, Shi Y (2018) Efficacy and safety of rh-endostatin (Endostar) combined with pemetrexed/cisplatin followed by rh-endostatin plus pemetrexed maintenance in non-small cell lung cancer: a retrospective comparison with standard chemotherapy. Thorac Cancer 9(11):1354–1360. https://doi.org/10.1111/1759-7714.12827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanabe K, Maeshima Y, Sato Y, Wada J (2017) Antiangiogenic therapy for diabetic nephropathy. Biomed Res Int 2017:5724069. https://doi.org/10.1155/2017/5724069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175. https://doi.org/10.1097/BCR.0b013e3181c7ed82

    Article  PubMed  Google Scholar 

  76. Alameddine HS, Morgan JE (2016) Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles. J Neuromuscul Dis 3(4):455–473. https://doi.org/10.3233/JND-160183

    Article  PubMed  PubMed Central  Google Scholar 

  77. Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:756078. https://doi.org/10.1155/2014/756078

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kowluru RA, Zhong Q, Santos JM (2012) Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert OpinInvestig Drugs 21(6):797–805. https://doi.org/10.1517/13543784.2012.681043

    Article  CAS  Google Scholar 

  79. Benezra R, Rafii S, Lyden D (2001) The Id proteins and angiogenesis. Oncogene 20(58):8334–8341. https://doi.org/10.1038/sj.onc.1205160

    Article  CAS  PubMed  Google Scholar 

  80. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 35:S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barot M, Gokulgandhi MR, Patel S, Mitra AK (2013) Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Med Chem 5(3):301–314. https://doi.org/10.4155/fmc.12.206

    Article  CAS  PubMed  Google Scholar 

  82. Nair R, Teo WS, Mittal V, Swarbrick A (2014) ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther 22(8):1407–1415. https://doi.org/10.1038/mt.2014.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Renaud SJ, Kubota K, Rumi MA, Soares MJ (2014) The FOS transcription factor family differentially controls trophoblast migration and invasion. J Biol Chem 289(8):5025–5039. https://doi.org/10.1074/jbc.M113.523746

    Article  CAS  PubMed  Google Scholar 

  84. Abdollahi A, Hahnfeldt P, Maercker C, Gröne H, Debus J, Ansorge W, Folkman J, Hlatky L, Huber P (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13(5):649–663

    Article  CAS  PubMed  Google Scholar 

  85. Gee E, Milkiewicz M, Haas TL (2010) p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J Cell Physiol 222(1):120–126. https://doi.org/10.1002/jcp.21924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246(1):36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172. https://doi.org/10.1111/j.1600-065X.2009.00782.x

    Article  CAS  PubMed  Google Scholar 

  89. Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, Vita G (2011) Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol 30(1):16–23

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY (2017) Hypoxia-inducible factors and cancer. Curr Sleep Med Rep 3(1):1–10. https://doi.org/10.1007/s40675-017-0062-7

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ikeda T, Sun L, Tsuruoka N, Ishigaki Y, Yoshitomi Y, Yoshitake Y, Yonekura H (2011) Hypoxia down-regulates sFlt-1 (sVEGFR-1) expression in human microvascular endothelial cells by a mechanism involving mRNA alternative processing. Biochem J 436(2):399–407. https://doi.org/10.1042/BJ20101490

    Article  CAS  PubMed  Google Scholar 

  92. Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC (2019) Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res 2019:8562408. https://doi.org/10.1155/2019/8562408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen X, Jin R, Chen R, Huang Z (2018) Complementary action of CXCL1 and CXCL8 in pathogenesis of gastric carcinoma. Int J Clin Exp Pathol 11(2):1036–1045

    PubMed  PubMed Central  Google Scholar 

  94. Tandle A, Blazer DG, Libutti SK (2004) Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2:22. https://doi.org/10.1186/1479-5876-2-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li K, Shi M, Qin S (2018) Current status and study progress of recombinant human endostatin in cancer treatment. Oncol Ther 6(1):21–43. https://doi.org/10.1007/s40487-017-0055-1

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang R, Qin S, Chen Y, Li Y, Chen C, Wang Z, Zheng R, Wu Q (2012) Enhanced anti-tumor and anti-angiogenic effects of metronomic cyclophosphamide combined with Endostar in a xenograft model of human lung cancer. Oncol Rep 28(2):439–445. https://doi.org/10.3892/or.2012.1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poluzzi C, Iozzo RV, Schaefer L (2016) Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 97:156–173. https://doi.org/10.1016/j.addr.2015.10.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present article did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

TM and TB: Conceived the idea and wrote the first draft; AS and SB: Review of literature and figure work; HS: Data compilation; SB: Proof Read.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, T., Behl, T., Sehgal, A. et al. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 48, 1819–1836 (2021). https://doi.org/10.1007/s11033-021-06205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06205-3

Keywords

Navigation