Skip to main content
Log in

Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the effects of resveratrol, a nutraceutical polyphenol, and Lactococcus lactis (bacteria probiotic), on metabolic parameters and hepatic proinflammatory markers expression. C57BL/6 mice were divided into 4 groups: Standard (ST), Lactococcus lactis (LL), Resveratrol (RSV), and Lactococcus lactis plus resveratrol (LL + RSV). Lactococcus lactis and resveratrol were administered by orogastric gavage. Blood parameters were assessed (total cholesterol, triglycerides, ALT and AST). IL-6 mRNA expression was evaluated by Real-time PCR and TNF-α protein expression was assessed by immunohistochemistry. The main findings showed that resveratrol and Lactococcus lactis association decreased body weight, aspartate aminotransferase and total cholesterol levels. LL and LL + RSV decreased triglycerides levels and IL-6 and TNF-α expression. These results open a perspective of using resveratrol and Lactococcus lactis to improve metabolic parameters and Lactococcus lactis in preventing inflammation and the hepatic diseases development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou Y, Chen K, He L et al (2015) The protective effect of resveratrol on concanavalin-A-induced acute hepatic injury in mice. Gastroenterol Res Pract 2015:1–12

    Article  Google Scholar 

  2. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Article  CAS  PubMed  Google Scholar 

  3. Lappas M (2012) Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators Inflamm 2012:5975–6014

    Article  Google Scholar 

  4. van Diepen JA, Berbée JF, Havekes LM, Rensen PC (2013) Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis 228:306–315

    Article  PubMed  Google Scholar 

  5. Johnson AR, Justin Milner J, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249:218–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964

    Article  CAS  PubMed  Google Scholar 

  7. Esposito K, Marfella R, Ciotola M et al (2004) Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292:1440–1446

    Article  CAS  PubMed  Google Scholar 

  8. Nicklas BJ, Ambrosius W, Messier SP et al (2004) Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial. Am J Clin Nutr 79:544–551

    Article  CAS  PubMed  Google Scholar 

  9. Mukherjee S, Dudley JI, Das DK (2010) Dose-dependency of resveratrol in providing health benefits. Dose Response 8:478–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monteiro CA, Cannon G, Moubarac JC et al (2015) Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr 18:2311–2322

    Article  PubMed  Google Scholar 

  11. Ebner S, Smug LN, Kneifel W, Salminen SJ, Sanders ME (2014) Probiotics in dietary guidelines and clinical recommendations outside the European Union. World J Gastroenterol 20:16095–16100

    Article  PubMed  PubMed Central  Google Scholar 

  12. Del Ben M, Polimeni L, Baratta F, Pastori D, Angelico F (2017) The role of nutraceuticals for the treatment of non-alcoholic fatty liver disease. Br J Clin Pharmacol 83:88–95

    Article  PubMed  Google Scholar 

  13. Sheth AA, Garcia-Tsao G (2008) Probiotics and liver disease. J Clin Gastroenterol 42:80–84

    Article  Google Scholar 

  14. Eslamparast T, Eghtesad S, Hekmatdoost A, Poustchi H (2013) Probiotics and nonalcoholic fatty liver disease. Middle East J Digest Dis 5:129–136

    Google Scholar 

  15. Cho SJ, Jung UJ, Choi MS (2012) Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr 108:2166–2175

    Article  CAS  PubMed  Google Scholar 

  16. Aguirre L, Fernandez-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19:18632–18655

    Article  PubMed  PubMed Central  Google Scholar 

  17. Novelle MG, Wahl D, Dieguez C, Bernier M, de Cabo R (2015) Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev 21:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Ligt M, Timmers S, Schrauwen P (2015) Resveratrol and obesity: can resveratrol relieve metabolic disturbances? Biochim Biophys Acta 1852:1137–1144

    Article  PubMed  Google Scholar 

  19. Ho Y-H, Lu Y-C, Chang H-C et al (2014) Daily intake of probiotics with high IFN-γ/IL-10 ratio increases the cytotoxicity of human natural killer cells: a personalized probiotic approach. J Immunol Res 2014:1–7

    Article  Google Scholar 

  20. Mallappa RH, Rokana N, Duary RK, Panwar H, Batish VK, Grover S (2012) Management of metabolic syndrome through probiotic and prebiotic interventions. Indian J Endocrinol Metab 16:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cavanagh D, Fitzgerald GF, McAuliffe O (2015) From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol 47:45–61

    Article  CAS  PubMed  Google Scholar 

  22. Luerce TD, Gomes-Santos AC, Rocha CS et al (2014) Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog 6:1–33

    Article  Google Scholar 

  23. Kahouli I, Tomaro-Duchesneau C, Prakash S (2013) Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol 62:1107–1123

    Article  CAS  PubMed  Google Scholar 

  24. Faghihzadeh F, Hekmatdoost A, Adibi P (2015) Resveratrol and liver: a systematic review. J Res Med Sci 20:797–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee W-K, Lim H-J, Kim S-Y et al (2005) Hypocholesterolemic effect of Lactococcus lactis subsp. lactis biovar diacetylactis N7 and Lactococcus lactis subsp. lactis 527 Strains in SD Rats. Biosci Microfl 24:11–16

    Article  CAS  Google Scholar 

  26. Naudin CR, Maner-Smith K, Owens JA et al (2020) Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology 159(639–651):e635

    Google Scholar 

  27. Wang B, Sun J, Li X et al (2013) Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity. Nutr Res 33:971–981

    Article  CAS  PubMed  Google Scholar 

  28. Poulsen MM, Fjeldborg K, Ornstrup MJ, Kjaer TN, Nohr MK, Pedersen SB (2015) Resveratrol and inflammation: challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta 1852:1124–1136

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  30. Poswar Fde O, Farias LC, Fraga CA et al (2015) Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J Endod 41:877–883

    Article  PubMed  Google Scholar 

  31. Orlando B, Bragazzi N, Nicolini C (2013) Bioinformatics and systems biology analysis of genes network involved in OLP (Oral Lichen Planus) pathogenesis. Arch Oral Biol 58:664–673

    Article  CAS  PubMed  Google Scholar 

  32. Santos EM, Farias LC, Santos SHS, de Paula AMB, Oliveira ESCS, Guimaraes ALS (2017) Molecular finds of pressure ulcer: a bioinformatics approach in pressure ulcer. J Tissue Viability 26:119–124

    Article  PubMed  Google Scholar 

  33. Fishilevich S, Zimmerman S, Kohn A et al (2016) Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016:1–17

    Article  Google Scholar 

  34. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815

    Article  Google Scholar 

  35. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452

    Article  Google Scholar 

  36. Guimaraes TA, Farias LC, Fraga CA et al (2016) Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anticancer Drugs 27:407–416

    Article  CAS  PubMed  Google Scholar 

  37. Guimaraes TA, Farias LC, Santos ES et al (2016) Metformin increases PDH and suppresses HIF-1alpha under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget 7:55057–55068

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  40. Giacomelli L, Nicolini C (2006) Gene expression of human T lymphocytes cell cycle: experimental and bioinformatic analysis. J Cell Biochem 99:1326–1333

    Article  CAS  PubMed  Google Scholar 

  41. Covani U, Marconcini S, Giacomelli L, Sivozhelevov V, Barone A, Nicolini C (2008) Bioinformatic prediction of leader genes in human periodontitis. J Periodontol 79:1974–1983

    Article  CAS  PubMed  Google Scholar 

  42. Bragazzi N, Sivozhelezov V, Nicolini C (2011) Leader gene: a fast data-mining tool for molecular genomics. J Proteom Bioinform 4:083–086

    Google Scholar 

  43. Timmers S, Konings E, Bilet L et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  CAS  PubMed  Google Scholar 

  44. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501:79–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pacholec M, Bleasdale JE, Chrunyk B et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285:8340–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wendling D, Abbas W, Godfrin-Valnet M et al (2013) Resveratrol, a sirtuin 1 activator, increases IL-6 production by peripheral blood mononuclear cells of patients with knee osteoarthritis. Clin Epigenetics 5:1–10

    Article  Google Scholar 

  47. Mukhopadhyay P, Pacher P, Das DK (2011) MicroRNA signatures of resveratrol in the ischemic heart. Ann N Y Acad Sci 1215:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Um JH, Park SJ, Kang H et al (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–663

    Article  CAS  PubMed  Google Scholar 

  49. Pan MH, Lai CS, Tsai ML, Ho CT (2014) Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 58:147–171

    Article  CAS  PubMed  Google Scholar 

  50. Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H (2008) Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 29:698–706

    Article  CAS  PubMed  Google Scholar 

  51. Jeon BT, Jeong EA, Shin HJ et al (2012) Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 61:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho IJ, Ahn JY, Kim S, Choi MS, Ha TY (2008) Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochem Biophys Res Commun 367:190–194

    Article  CAS  PubMed  Google Scholar 

  53. Gomez-Zorita S, Fernandez-Quintela A, Macarulla MT et al (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210

    Article  CAS  PubMed  Google Scholar 

  54. Alberdi G, Rodriguez VM, Macarulla MT, Miranda J, Churruca I, Portillo MP (2013) Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 29:562–567

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Moustaid-Moussa N, Chen L et al (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25:1–18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nunez IN, Galdeano CM, de LeBlanc AM, Perdigon G (2014) Evaluation of immune response, microbiota, and blood markers after probiotic bacteria administration in obese mice induced by a high-fat diet. Nutrition 30:1423–1432

    Article  PubMed  Google Scholar 

  57. Kadooka Y, Sato M, Ogawa A et al (2013) Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr 110:1696–1703

    Article  CAS  PubMed  Google Scholar 

  58. Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y (2013) Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS ONE 8:1–8

    CAS  Google Scholar 

  59. Xie N, Cui Y, Yin YN et al (2011) Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complem Altern Med 11:11–53

    Article  Google Scholar 

  60. Buss C, Valle-Tovo C, Miozzo S, Alves de Mattos A (2014) Probiotics and synbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Ann Hepatol 13:482–488

    Article  PubMed  Google Scholar 

  61. Schmatz R, Perreira LB, Stefanello N et al (2012) Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94:374–383

    Article  CAS  PubMed  Google Scholar 

  62. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochim Biophys Acta 1812:719–731

    Article  CAS  PubMed  Google Scholar 

  63. Liu K, Zhou R, Wang B, Mi MT (2014) Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 99:1510–1519

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Zhang H, Chen X, Chen Y et al (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci 95:1645–1654

    Article  CAS  PubMed  Google Scholar 

  65. Andrade JM, Paraiso AF, de Oliveira MV et al (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30:915–919

    Article  CAS  PubMed  Google Scholar 

  66. Wang H, Yang YJ, Qian HY, Zhang Q, Xu H, Li JJ (2012) Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev 17:437–448

    Article  CAS  PubMed  Google Scholar 

  67. Lin P (2015) Targeting interleukin-6 for noninfectious uveitis. Clin Ophthalmol 9:1697–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoon H, Yoon YS, Kim MS, Chung MJ, Yum DY (2014) A probiotic preparation duolac-gold ameliorates dextran sulphate sodium-induced mouse colitis by downregulating the expression of IL-6. Toxicol Res 30:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  CAS  PubMed  Google Scholar 

  70. Fausel R, Afzali A (2015) Biologics in the management of ulcerative colitis - comparative safety and efficacy of TNF-alpha antagonists. Ther Clin Risk Manag 11:63–73

    PubMed  PubMed Central  Google Scholar 

  71. Ritze Y, Bardos G, Claus A et al (2014) Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS ONE 9:80–169

    Article  Google Scholar 

  72. Sharma R, Kapila R, Dass G, Kapila S (2014) Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age (Dordr) 36:96–86

    Article  Google Scholar 

  73. Huang IF, Lin IC, Liu PF et al (2015) Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-beta signaling. BMC Microbiol 15:203

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anukam KC, Hayes K, Summers K and Reid G (2009) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study. Adv Urol, 680–663

  75. Zhu X, Liu Q, Wang M et al (2011) Activation of Sirt1 by resveratrol inhibits TNF-alpha induced inflammation in fibroblasts. PLoS ONE 6:1–7

    Article  Google Scholar 

  76. Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754:253–262

    Article  CAS  PubMed  Google Scholar 

  77. Thirunavukkarasu C, Watkins SC, Gandhi CR (2006) Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology 44:389–398

    Article  CAS  PubMed  Google Scholar 

  78. Leonard M, Ryan MP, Watson AJ, Schramek H, Healy E (1999) Role of MAP kinase pathways in mediating IL-6 production in human primary mesangial and proximal tubular cells. Kidney Int 56:1366–1377

    Article  CAS  PubMed  Google Scholar 

  79. Herlaar E, Brown Z (1999) p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5:439–447

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work was supported, in part, by Grants from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Henrique Sousa Santos.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee of Experimentation and Animal Welfare of Unimontes, Montes Claros, Brazil (process nº 082/2014).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 669 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, K.L., Lelis, D.F., de Freitas, D.F. et al. Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice. Mol Biol Rep 48, 1725–1734 (2021). https://doi.org/10.1007/s11033-021-06190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06190-7

Keywords

Navigation