Skip to main content
Log in

The nearly complete mitogenome of the Southeast Asian firefly Pteroptyx tener (Coleoptera: Lampyridae)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The estuarine firefly, Pteroptyx tener, aggregates in the thousands in mangrove trees lining tidal rivers in Southeast Asia where they engage one another in a nocturnal, pre-mating ritual of synchronised courtship flashes. Unfortunately, populations of the species by virtue of being restricted to isolated estuarine rivers systems in the region, are at risk of genetic isolation. Because of this concern we undertook the task of sequencing and characterising the mitochondrial DNA genome of P. tener, as the first step towards helping us to characterise and better understand their genetic diversity. We sequenced and assembled the mitochondrial DNA genome of P. tener from two male and female specimens from the district of Kuala Selangor in Peninsular Malaysia and announce the molecules in this publication. We also reconstructed the phylogenetic trees of all available lampyrids mitogenomes and suggest the need to re-examine our current understanding of their classification which have largely been based on morphological data and the cox1 gene. Separately, our analysis of codon usage patterns among lampyrid mitogenomes showed that the codon usage in a majority of the protein-coding genes were non-neutral. Codon usage patterns between mitogenome sequences of P. tener were, however, largely neutral. Our findings demonstrate the usefulness of mitochondrial genes/mitogenomes for analysing both inter- and intra- specific variation in the Lampyridae to aid in species discovery in this highly variable genus; and elucidate the phylogenetic relationships of Pteroptyx spp. from the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jusoh WF, Hashim NR, Sääksjärvi IE, Adam NA, Wahlberg N (2014) Species delineation of Malaysian mangrove fireflies (Coleoptera: Lampyridae) using DNA barcodes. The Coleopterists Bulletin 68(4):703–711

    Article  Google Scholar 

  2. Sriboonlert A, Swatdipong A, Wonnapinij P, E-Kobon T, Thancharoen A, (2015) New record of Pteroptyx tener Olivier (Coleoptera: Lampyridae: Luciolinae) in Thailand. The Coleopterists Bulletin 69(2):332–336

    Article  Google Scholar 

  3. Foo K, Dawood MM (2017) Diversity of Pteroptyx fireflies (Coleoptera: Lampyridae) and their display trees at Klias Peninsula, Sabah, Malaysia. Journal of Tropical Biology and Conservation 14:95–103

    Google Scholar 

  4. Jusoh WFA, Hashim NR, Ibrahim ZZ (2010) Firefly distribution and abundance on mangrove vegetation assemblages in Sepetang Estuary. Peninsular Malaysia Wetlands Ecology and Management 18(3):367–373. https://doi.org/10.1007/s11273-009-9172-4

    Article  Google Scholar 

  5. Chey VK (2004) Fireflies of Sungai Klias and their display trees. Sepilok Bulletin 1:67–69

    Google Scholar 

  6. Branham M, Wenzel J (2003) The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19:1–22. https://doi.org/10.1016/s0748-3007(02)00131-7

    Article  PubMed  Google Scholar 

  7. Buck J, Buck E (1966) Biology of synchronous flashing of fireflies. Nature 211:562–564

    Article  Google Scholar 

  8. Case JF (1980) Courting behavior in a synchronously flashing aggregative firefly, Pteroptyx tener. Biol Bull 159:613–625. https://doi.org/10.2307/1540827

    Article  Google Scholar 

  9. Buck J, Buck E (1968) Mechanism of rhythmic synchronous flashing of fireflies. Science 159:1319–1327. https://doi.org/10.1126/science.159.3821.1319

    Article  CAS  PubMed  Google Scholar 

  10. Shahwahid HOM, Iqbal MNM, Amira AM et al (2013) Assessing service quality of community-based ecotourism: A case study from Kampung Kuantan Firefly Park. Journal of Tropical Forest Science 25(1):22–33

    Google Scholar 

  11. Lemini RH, Boileau EYS, Russell C (2019) Entomotourism: The Allure of the Arthropod. Soc Anim 27:733–750. https://doi.org/10.1163/15685306-00001830

    Article  Google Scholar 

  12. Nallakumar K (2003) The synchronously flashing aggregative fireflies of Peninsular Malaysia. Biodiversity 4(2):11–16. https://doi.org/10.1080/14888386.2003.9712684

    Article  Google Scholar 

  13. Liew TS, Schilthuizen M (2014) Association between shell morphology of micro-land snails (genus Plectostoma) and their predator’s predatory behaviour. PeerJ. https://doi.org/10.7717/peerj.329

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lewis SM, Wong CH, Owens ACS et al (2020) A global perspective on firefly extinction threats. Bioscience 70:157–167. https://doi.org/10.1093/biosci/biz157

    Article  Google Scholar 

  15. Leong KH, Tan LLB, Mustafa AM (2007) Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere 66:1153–1159

    Article  CAS  PubMed  Google Scholar 

  16. Wong YJ, Shimizu Y, He K et al (2020) Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor River basin. Malaysia Environ Monit Assess 192:644. https://doi.org/10.1007/s10661-020-08543-4

    Article  PubMed  Google Scholar 

  17. Wan Juliana WA, Shahril MH, Nik Abdul Rahman NA et al (2012) Vegetation profile of the firefly habitat along the riparian zones of Sungai Selangor at Kampung Kuantan, Kuala Selangor. Malaysian Appl Biol 41:55–58

    Google Scholar 

  18. Wong CH, Yeap CA (2012) Conservation of Congregating Firefly Zones (CFZs) in Peninsular Malaysia. Lampyrid 2:174–187

    Google Scholar 

  19. Prasertkul T (2018) Characteristics of Pteroptyx Firefly Congregations in a Human Dominated Habitat. J Insect Behav 31:436–457. https://doi.org/10.1007/s10905-018-9687-8

    Article  Google Scholar 

  20. Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411

    Article  CAS  Google Scholar 

  21. Andrews S (2010) A quality control tool for high throughput sequence data [online]. Available online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  22. Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarise analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Danecek P, Schiffels S, Durbin R (2016) Multiallelic calling model in bcftools(-m). Accessed 18 January, 2021. <samtools.github.io/bcftools/call-m.pdf>

  26. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  28. Sharp PM, Li WH (1987) The Codon Adaptation Index: A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295. https://doi.org/10.1093/nar/15.3.1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bennetzen JL, Hall BD (1982) Codon selection in yeast. The Journal of Biological Chemistry 257(6):3026–3031

    Article  CAS  PubMed  Google Scholar 

  30. Wright F (1990) The effective number of codons used in a gene. Gene 87:23–29

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Puigbò P, Bravo IG, Garcia-Vallvé S (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics 9:65. https://doi.org/10.1186/1471-2105-9-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  34. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  35. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  39. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nat Rev Genet 13(1):36–46. https://doi.org/10.1038/nrg3117

    Article  CAS  Google Scholar 

  40. Clare EL, Kerr KCR, von Königslöw TE, Wilson JJ, Hebert PDN (2008) Diagnosing mitochondrial DNA diversity: Applications of a Sentinel Gene Approach. J Mol Evol 66:362–367

    Article  CAS  PubMed  Google Scholar 

  41. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465. https://doi.org/10.1038/290457a0.PMID7219534.S2CID4355527

    Article  CAS  PubMed  Google Scholar 

  42. Fan Y, Fu X (2017) The complete mitochondrial genome of the firefly, Pteroptyx maipo (Coleoptera: Lampyridae). Mitochondrial DNA Part B: Resources 2:795–796

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ballantyne LA, Lambkin CL, Boontop Y, Jusoh WFA (2015) Revisional studies on the Luciolinae fireflies of Asia (Coleoptera: Lampyridae): 1. The Genus Pyrophanes Olivier with two new species. 2. Four new species of Pteroptyx Olivier and 3. A new Genus Inflata Boontop, with redescription of Luciola indica (Motsc.). Zootaxa 3959:1–83. https://doi.org/10.11646/zootaxa.3959.1.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our deepest thanks to Mr. Kuan Kam-Hon (Executive Chairman of Hartalega Holdings Berhad, Company Registration No. 741883-X), Mr. Kuan Vin-Seung (Director, Hartalega Foundation, Company Registration No. 1275832-M) and Ms. Melissa Majid (Manager, Hartalega Foundation) for supporting our firefly conservation work through Grant No: 51-31-08-02-008 to FRIM. We also thank the Director General, FRIM and members of the Genetics Laboratory, FRIM for administrative support on the project.

Funding

Hartalega Foundation (Project No: 51-31-35-08-02-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Cheng or M. N. Mat-Isa.

Ethics declarations

Conflict of interest

The authors have none to declare.

Consent for publication

Consent for publication has been obtained from the Director of the Biotechnology Division, FRIM.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Mat-Isa, M.N., Sapian, I.S. et al. The nearly complete mitogenome of the Southeast Asian firefly Pteroptyx tener (Coleoptera: Lampyridae). Mol Biol Rep 48, 1281–1290 (2021). https://doi.org/10.1007/s11033-021-06189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06189-0

Keywords

Navigation