Skip to main content

Advertisement

Log in

Regulation of valproic acid induced EMT by AKT/GSK3β/β-catenin signaling pathway in triple negative breast cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Valproic acid (VPA) is a selective histone deacetylation (HDAC) inhibitor and exerts anti-cancer properties in different types of cancer. The epithelial-to-mesenchymal transition (EMT) mediating by different signaling cascade can be a potential target in aggressive human cancers. Therefore, we aimed to clarified the unravel relationship between AKT/GSK3β/β-catenin signalling pathway and VPA-induced EMT in triple negative breast cancer (TNBC). The cytotoxicity of VPA in MDA-MB-231 TNBC and MCF-10A control cells was evaluated. Alterations in the expression levels of Snail, E-cadherin, AKT, GSK3β, β-catenin were analyzed by RT-PCR. Additionally, Annexin V, cell cycle and wound healing assays were performed. Our results showed that VPA remarkably inhibited the growth of TNBC cell and triggered apoptotic cell death through G0/G1 arrest. Furthermore, VPA increased cell migration and activated the EMT process through significantly increasing Snail expression and in turn downregulation of E-cadherin and GKS3β levels. However, the level of AKT and β-catenin was reduced after treatment of VPA. Our data showed that VPA induced EMT process and cell migration in TNBC cells. However, AKT/GSK3β/β-catenin signaling pathway did not mediate EMT activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marsoni S, Damia G, Camboni G (2008) A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics 3:164–171 https://doi.org/10.4161/epi.3.3.6253

    Article  Google Scholar 

  2. Heers H, Stanislaw J, Harrelson J, Lee MW (2018) Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol 835:61–74 https://doi.org/10.1016/j.ejphar.2018.07.057

    Article  CAS  Google Scholar 

  3. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:a026831 https://doi.org/10.1101/cshperspect.a026831

    Article  Google Scholar 

  4. Behera J, Jayaprakash V, Sinha BN (2015) Histone deacetylase inhibitors: a review on class-I specific inhibition. Mini Rev Med Chem 15(9):731–750 https://doi.org/10.2174/1389557515666150521162237

    Article  CAS  Google Scholar 

  5. Suraweera A, O'Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92 https://doi.org/10.3389/fonc.2018.00092

    Article  Google Scholar 

  6. Fang MH, Ji XM (2009) Histone modification and its application in therapy for hematologic malignancies. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17(3):816–820

    CAS  PubMed  Google Scholar 

  7. Namdar M, Perez G, Ngo L, Marks PA (2010) Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 107(46):20003–20008 https://doi.org/10.1073/pnas.1013754107

    Article  CAS  Google Scholar 

  8. Rodrigues C, Chhun S, Chiron C, Dulac O, Rey E, Pons G, Jullien V (2018) A population pharmacokinetic model taking into account protein binding for the sustained-release granule formulation of valproic acid in children with epilepsy. Eur J Clin Pharmacol 74(6):793–803. https://doi.org/10.1007/s00228-018-2444-2

    Article  CAS  PubMed  Google Scholar 

  9. Khan S, Ahirwar K, Jena G (2016) Anti-fibrotic effects of valproic acid: role of HDAC inhibition and associated mechanisms. Epigenomics 8(8):1087–1101 https://doi.org/10.2217/epi-2016-0034

    Article  CAS  Google Scholar 

  10. Tran LNK, Kichenadasse G, Butler LM, Centenera MM, Morel KL, Ormsby RJ, Michael MZ, Lower KM, Sykes PJ (2017) The combination of metformin and valproic acid induces synergistic apoptosis in the presence of p53 and androgen signaling in prostate cancer. Mol Cancer Ther 16(12):2689–2700 https://doi.org/10.1158/1535-7163.MCT-17-0074

    Article  CAS  Google Scholar 

  11. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978 https://doi.org/10.1093/emboj/20.24.6969

    Article  Google Scholar 

  12. Tinari N, De Tursi M, Grassadonia A, Zilli M, Stuppia L, Iacobelli S, Natoli C (2012) An epigenetic approach to pancreatic cancer treatment: the prospective role of histone deacetylase inhibitors. Curr Cancer Drug Targets 12(4):439–452 https://doi.org/10.2174/156800912800190884

    Article  CAS  Google Scholar 

  13. Travaglini L, Vian L, Billi M, Grignani F, Nervi C (2009) Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol 41(1):225–234 https://doi.org/10.1016/j.biocel.2008.08.019

    Article  CAS  Google Scholar 

  14. Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, Makino I, Nakagawara H, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47(6):2073–2081 https://doi.org/10.3892/ijo.2015.3213

    Article  CAS  Google Scholar 

  15. Kelkar MG, Senthilkumar K, Jadhav S, Gupta S, Ahn BC, De A (2016) Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation. Sci Rep 6:19341 https://doi.org/10.1038/srep19341

    Article  CAS  Google Scholar 

  16. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417–1419 https://doi.org/10.1172/JCI39675

    Article  CAS  Google Scholar 

  17. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134 https://doi.org/10.1007/s10911-010-9178-9

    Article  Google Scholar 

  18. Giudice FS, Pinto DS Jr, Nör JE, Squarize CH, Castilho RM (2013) Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One 8(3):e58672 https://doi.org/10.1371/journal.pone.0058672

    Article  CAS  Google Scholar 

  19. Cha YH, Yook JI, Kim HS, Kim NH (2015) Catabolic metabolism during cancer EMT. Arch Pharm Res 38(3):313–320 https://doi.org/10.1007/s12272-015-0567-x

    Article  CAS  Google Scholar 

  20. Wu L, Feng H, Hu J, Tian X, Zhang C (2016) Valproic acid (VPA) promotes the epithelial mesenchymal transition of hepatocarcinoma cells via transcriptional and post-transcriptional up regulation of snail. Biomed Pharmacother 84:1029–1035 https://doi.org/10.1016/j.biopha.2016.10.023

    Article  CAS  Google Scholar 

  21. Marquez-Curtis LA, Qiu Y, Xu A, Janowska-Wieczorek A (2014) Migration, proliferation, and differentiation of cord blood mesenchymal stromal cells treated with histone deacetylase inhibitor valproic acid. Stem Cells Int 2014:610495 https://doi.org/10.1155/2014/610495

    Article  Google Scholar 

  22. Zhang S, Tang Z, Qing B, Tang R, Duan Q, Ding S, Deng D (2019) Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of snail and transcriptional upregulation of Zeb1. Eur J Pharmacol 865:172745 https://doi.org/10.1016/j.ejphar.2019.172745

    Article  CAS  Google Scholar 

  23. Viswanathan VS, Ryan MJ, Dhruv HD et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547(7664):453–457 https://doi.org/10.1038/nature23007

    Article  CAS  Google Scholar 

  24. Zheng H, Li W, Wang Y, Liu Z, Cai Y, Xie T, Shi M, Wang Z, Jiang B (2013) Glycogen synthase kinase-3 beta regulates snail and β-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. Eur J Cancer 49(12):2734–2746 https://doi.org/10.1016/j.ejca.2013.03.014

    Article  CAS  Google Scholar 

  25. Xu W, Yang Z, Lu N (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes Migr 9(4):317–324 https://doi.org/10.1080/19336918.2015.1016686

    Article  CAS  Google Scholar 

  26. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205 https://doi.org/10.1016/j.cell.2012.05.012

    Article  CAS  Google Scholar 

  27. Ma XJ, Wang YS, Gu WP, Zhao X (2017) The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J 58(5):349–357 https://doi.org/10.3325/cmj.2017.58.349

    Article  CAS  Google Scholar 

  28. Zhang L, Wang G, Wang L, Song C, Leng Y, Wang X, Kang J (2012) VPA inhibits breast cancer cell migration by specifically targeting HDAC2 and down-regulating Survivin. Mol Cell Biochem 361(1–2):39–45 https://doi.org/10.1007/s11010-011-1085-x

    Article  CAS  Google Scholar 

  29. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10(1):101 https://doi.org/10.1186/s13045-017-0471-6

    Article  Google Scholar 

  30. Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, Ewald AJ (2019) E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573(7774):439–444 https://doi.org/10.1038/s41586-019-1526-3

    Article  CAS  Google Scholar 

  31. Shang S, Hua F, Hu ZW (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8(20):33972–33989 https://doi.org/10.18632/oncotarget.15687

    Article  Google Scholar 

  32. Huels DJ, Ridgway RA, Radulescu S, Leushacke M, Campbell AD, Biswas S et al (2015) E-cadherin can limit the transforming properties of activating β-catenin mutations. EMBO J 14;34(18):2321–2333 https://doi.org/10.15252/embj.201591739

  33. Ryu WJ, Lee JD, Park JC, Cha PH, Cho YH, Kim JY, Sohn JH, Paik S, Choi KY (2020) Destabilization of β-catenin and RAS by targeting the Wnt/β-catenin pathway as a potential treatment for triple-negative breast cancer. Exp Mol Med 52:832–842 https://doi.org/10.1038/s12276-020-0440-y

    Article  CAS  Google Scholar 

  34. Shen T, Zhang K, Siegal GP, Wei S (2016) Prognostic value of E-cadherin and β-catenin in triple-negative breast cancer. Am J Clin Pathol 146(5):603–610. https://doi.org/10.1093/ajcp/aqw183

    Article  CAS  PubMed  Google Scholar 

  35. Borcherding N, Cole K, Kluz P, Jorgensen M, Kolb R, Bellizzi A, Zhang W (2018) Re-evaluating E-cadherin and β-catenin: a pan-cancer proteomic approach with an emphasis on breast cancer. Am J Pathol 188(8):1910–1920. https://doi.org/10.1016/j.ajpath.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song M, Bode AM, Dong Z, Lee MH (2019) AKT as a therapeutic target for cancer. Cancer Res 79(6):1019–1031 https://doi.org/10.1158/0008-5472.CAN-18-2738

    Article  CAS  Google Scholar 

  37. Duda P, Akula SM, Abrams SL, Steelman LS, Martelli AM, Cocco L et al (2020) Targeting GSK3 and associated signaling pathways involved in cancer. Cells 9(5):1110 https://doi.org/10.3390/cells9051110

    Article  CAS  Google Scholar 

  38. Xia Q, Zheng Y, Jiang W, Huang Z, Wang M, Rodriguez R, Jin X (2016) Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells. Oncol Lett 12(3):1826–1832 https://doi.org/10.3892/ol.2016.4880

    Article  CAS  Google Scholar 

  39. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C (2014) Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer 14:370 https://doi.org/10.1186/1471-2407-14-370

    Article  Google Scholar 

  40. Zhang C, Liu S, Yuan X, Hu Z, Li H, Wu M, Yuan J, Zhao Z, Su J, Wang X, Liao Y, Liu Q (2016) Valproic acid promotes human glioma U87 cells apoptosis and inhibits glycogen synthase kinase-3β through ERK/Akt signaling. Cell Physiol Biochem 39(6):2173–2185 https://doi.org/10.1159/000447912

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

ZO, BOI, ES,GGE, ADO and SK conceptualized, design and coordinated the investigation. ZO, BOI, GGE and ADO conducted the analyses and coordinated the investigation. ES an SK analyzed the data and carried out the statistical analysis. All authors participated in writing, reading and approval of the final manuscript.

Corresponding author

Correspondence to Asuman Deveci Ozkan.

Ethics declarations

Conflict of interest

The authors have no conflicts and financial of interest to declare that are relevant to the content of this article.

Ethics approval

No ethics approval was received for conducting this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozman, Z., Ozbek Iptec, B., Sahin, E. et al. Regulation of valproic acid induced EMT by AKT/GSK3β/β-catenin signaling pathway in triple negative breast cancer. Mol Biol Rep 48, 1335–1343 (2021). https://doi.org/10.1007/s11033-021-06173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06173-8

Keywords

Navigation