Skip to main content

Advertisement

Log in

The role of FOXP3 rs3761548 and rs2294021 polymorphisms in pediatrics acute lymphoblastic leukemia: association with risk and response to therapy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

FOXP3 X-linked gene has crucial roles in the development and function of regulatory T cells. We investigated the association of FOXP3 rs3761548, rs3761549 and rs2294021 single nucleotide polymorphisms (SNPs) with acute lymphoblastic leukemia (ALL) susceptibility and response to therapy. Genotyping was performed in 247 patients and 210 healthy subjects. We observed a higher frequency of rs3761548 A carriers and rs2294021 C carriers (p < 0.04) in male patients, and lower frequencies of rs3761548 AC genotype (p = 0.04) and rs2294021 CT genotype (p = 0.01) in female patients compared to controls. ACC (p = 0.04) and ATC haplotypes (p = 0.002) were associated with susceptibility to ALL. There was a significant correlation between the genotypes of rs3761548 and rs2294021 SNPs with event-free survival (EFS) and overall survival (OS). The rs3761548 A genotype in male patients was associated with increased risk of relapse (p < 0.0001), shorter EFS, increased death rate (p = 0.002) and shorter OS compared to C genotype (p = 0.001). Similar significant results were observed for the relation of rs2294021 C genotype with response to therapy in male patients. In females, patients with rs3761548 AC genotype had longer EFS (p = 0.02) and those with rs2294021 CT had longer EFS and OS (p < 0.005). According to haplotype analysis, patients carrying ACC or ATC haplotypes had the highest number of WBCs and shorter EFS or OS, and patients with CCT haplotype had the lowest number of WBCs and longer EFS or OS. These results provided evidence for the impact of these polymorphisms on susceptibility and response to therapy in children with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amirghofran Z, Asiaee E, Kamazani FM (2016) Soluble CD 44 and CD 44v6 and prognosis in children with B-cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 12:375–382. https://doi.org/10.1111/ajco.12268

    Article  Google Scholar 

  2. Kamazani FM, Bahoush GR, Aghaeipour M, Vaeli S, Amirghofran Z (2013) CD44 and CD27 expression pattern in B cell precursor acute lymphoblastic leukemia and its clinical significance. Med Oncol 30:359–366. https://doi.org/10.1007/s12032-012-0359-9

    Article  CAS  PubMed  Google Scholar 

  3. Zhu J (2015) The research of treg cells: progress and challenge. World J Cardiovasc Dis 5:150–165. https://doi.org/10.4236/wjcd.2015.56018

    Article  Google Scholar 

  4. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500. https://doi.org/10.1038/nri2785

    Article  CAS  PubMed  Google Scholar 

  5. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307. https://doi.org/10.1038/nri1806

    Article  CAS  Google Scholar 

  6. Ohue Y, Nishikawa H (2019) Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci 110:2080–2089. https://doi.org/10.1111/cas.14069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dominguez-Villar M, Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol 19:665–673. https://doi.org/10.1038/s41590-018-0120-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng Z, Guo Y, Ming L (2018) Functional Foxp3 polymorphisms and the susceptibility to cancer: an update meta-analysis. Medicine 97:1–8. https://doi.org/10.1097/MD.0000000000011927

    Article  CAS  Google Scholar 

  9. Hiroki CH, Erthal RP, Pereira APL, Pacholak LM, Fujita TC, Marinello PC et al (2016) Acute lymphoblastic leukemia and regulatory T cells: biomarkers and immunopathogenesis. Curr Immunol Rev 12:14–19. https://doi.org/10.2174/1573395511666150923234547

    Article  CAS  Google Scholar 

  10. D’Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L et al (2011) Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res 35:363–368. https://doi.org/10.1016/j.leukres.2010.08.010

    Article  PubMed  Google Scholar 

  11. Wu C-P, Qing X, Wu C-Y, Zhu H, Zhou H-Y (2012) Immunophenotype and increased presence of CD4+ CD25+ regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett 3:421–424. https://doi.org/10.3892/ol.2011.499

    Article  CAS  PubMed  Google Scholar 

  12. Bhattacharya K, Chandra S, Mandal C (2014) Critical stoichiometric ratio of CD4+ CD25+ FoxP3+ regulatory T cells and CD4+ CD25− responder T cells influence immunosuppression in patients with B-cell acute lymphoblastic leukaemia. Immunology 142:124–139. https://doi.org/10.1111/imm.12237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061. https://doi.org/10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  14. Long M, Park S-G, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931. https://doi.org/10.1016/j.immuni.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  15. Campbell DJ, Ziegler SF (2007) FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7:305–310. https://doi.org/10.1038/nri2061

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Zhang H, Liao W, Zhou J, He G, Xie X et al (2013) FOXP3 gene polymorphism is associated with hepatitis B-related hepatocellular carcinoma in China. J Exp Clin Cancer Res 32:39–46. https://doi.org/10.1186/1756-9966-32-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang LL, Ruan L-W (2014) Association between FOXP3 promoter polymorphisms and cancer risk: a meta-analysis. Oncol Lett 8:2795–27959. https://doi.org/10.3892/ol.2014.2585

    Article  PubMed  PubMed Central  Google Scholar 

  18. He Y-Q, Bo Q, Yong W, Qiu Z-X, Li Y-L, Li W-M (2013) FoxP3 genetic variants and risk of non-small cell lung cancer in the Chinese Han population. Gene 531:422–425. https://doi.org/10.1016/j.gene.2013.08.066

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Yu Q, Liu B, Zhu L (2014) Association of FoxP3 rs3761548 polymorphism with susceptibility to colorectal cancer in the Chinese population. Med Oncol 31:374–377. https://doi.org/10.1007/s12032-014-0374-0

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, Zheng L, Xu L, Zhang Y, Liu X, Hu L et al (2015) Association between FOXP3, FOXE1 gene polymorphisms and risk of differentiated thyroid cancer in Chinese Han population. Mol Biol 4:1–5. https://doi.org/10.1002/jcla.22104

    Article  CAS  Google Scholar 

  21. Meadows AT, Chintagumpala M (2009) Children’s Oncology Group trials for retinoblastoma. In: Singh A, Damato B, Pe’er J, Murphree AL, Perry JD (eds) Essentials of ophthalmic oncology. SLACK Incorporated, Thorofare

    Google Scholar 

  22. Pizzo PA, Poplack DG (2015) Principles and practice of pediatric oncology. Lippincott Williams & Wilkins, New York

    Google Scholar 

  23. Mojtahedi Z, Erfani N, Haghshenas MR, Hosseini SV, Ghaderi A (2013) Association of FoxP3/Scurfin germline polymorphism (C-2383T/rs3761549) with colorectal cancer. Ann Colorectal Res 1:1–6. https://doi.org/10.17795/ACR-11478

    Article  Google Scholar 

  24. Jmaa MB, Abida O, Bahloul E, Toumi A, Khlif S, Fakhfakh R et al (2017) Role of FOXP3 gene polymorphism in the susceptibility to Tunisian endemic Pemphigus Foliaceus. Immunol Lett 184:105–111. https://doi.org/10.1016/j.imlet.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Ghavami A, Fathpour G, Amirghofran Z (2018) Association of IL-27 rs153109 and rs17855750 polymorphisms with risk and response to therapy in acute lymphoblastic leukemia. Pathol Oncol Res 24:653–662. https://doi.org/10.1007/s12253-017-0295-2

    Article  CAS  PubMed  Google Scholar 

  26. Wing JB, Tanaka A, Sakaguchi S (2019) Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50:302–316. https://doi.org/10.1016/j.immuni.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  27. Liyanage UK, Moore TT, Joo H-G, Tanaka Y, Herrmann V, Doherty G et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol Res 169:2756–2761. https://doi.org/10.4049/jimmunol.169.5.2756

    Article  CAS  Google Scholar 

  28. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al (2001) Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    CAS  PubMed  Google Scholar 

  29. Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res 62:5267–5272

    CAS  PubMed  Google Scholar 

  30. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

  31. Whiteside TL (ed) (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22:327–334. https://doi.org/10.1016/j.semcancer.2012.03.004

  32. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  33. Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA (2008) Local and systemic induction of CD4+ CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 111:5359–5370. https://doi.org/10.1182/blood-2007-08105395

    Article  CAS  PubMed  Google Scholar 

  34. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN et al (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755–1762. https://doi.org/10.1182/blood-2003-07-2594

    Article  CAS  PubMed  Google Scholar 

  35. Jak M, Jak M, Mous R, Remmerswaal EB, Spijker R, Jaspers A et al (2009) Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leuk Lymphoma 50:788–801. https://doi.org/10.1080/10428190902803677

    Article  CAS  PubMed  Google Scholar 

  36. Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z et al (2011) Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 129:1373–1381. https://doi.org/10.1002/ijc.25791

    Article  CAS  PubMed  Google Scholar 

  37. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al (2005) Reduced frequencies and suppressive function of CD4+ CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106:2018–2025. https://doi.org/10.1182/blood-2005-02-0642

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387. https://doi.org/10.1016/j.cell.2006.05.042

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Liu R, Ribick M, Zheng P, Liu Y (2010) FOXP3 as X-linked tumor suppressor. Discov Med 10:322–328

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W et al (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286. https://doi.org/10.1016/j.cell.2007.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roncador G, Garcia J, Maestre L, Lucas E, Menarguez J, Ohshima K et al (2005) FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 19:2247–2253. https://doi.org/10.1038/sj.leu.2403965

    Article  CAS  PubMed  Google Scholar 

  42. Karube K, Aoki R, Sugita Y, Yoshida S, Nomura Y, Shimizu K et al (2008) The relationship of FOXP3 expression and clinicopathological characteristics in adult T-cell leukemia/lymphoma. Mod Pathol 21:617–625. https://doi.org/10.1038/modpathol.2008.25

    Article  CAS  PubMed  Google Scholar 

  43. Verma S, Tanaka Y, Shimizu S, Tanimine N, Ohdan H (2017) Significant association between FOXP3 gene polymorphism and steroid-resistant acute rejection in living donor liver transplantation. Hepatol Commun 1:406–420. https://doi.org/10.1002/hep4.1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen Z, Chen L, Hao F, Wang G, Fan P, Liu Y (2010) Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47/c-Myb binding. J Cell Mol Med 14:226–241. https://doi.org/10.1111/j.1582-4934.2008.00370.x

    Article  CAS  PubMed  Google Scholar 

  45. Jahan P, Tippisetty S, Komaravalli PL (2015) FOXP3 is a promising and potential candidate gene in generalised vitiligo susceptibility. Front Genet 6:249–251. https://doi.org/10.3389/fgene.2015.00249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saxena D, Misra M, Parveen F, Phadke S, Agrawal S (2015) The transcription factor Forkhead Box P3 gene variants affect idiopathic recurrent pregnancy loss. Placenta 36:226–231. https://doi.org/10.1016/j.placenta.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  47. Xia S-L, Ying S-J, Lin Q-R, Wang X-Q, Hong W-J, Lin Z-J et al (2019) Association of ulcerative colitis with FOXP3 Gene polymorphisms and its colonic expression in Chinese patients. Gastronet Res Pract 1:1–10. https://doi.org/10.1155/2019/4052168

    Article  CAS  Google Scholar 

  48. Owen CJ, Eden JA, Jennings CE, Wilson V, Cheetham TD, Pearce SH (2006) Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J Mol Endocrinol 37:97–104. https://doi.org/10.1677/jme.1.02072

    Article  CAS  PubMed  Google Scholar 

  49. Nam M, Shin S, Park KU, Kim I, Yoon S-S, Kwon T-K et al (2018) Association of FOXP3 single nucleotide polymorphisms with clinical outcomes after allogenic hematopoietic stem cell transplantation. Ann Lab Med 38:591–598. https://doi.org/10.3343/alm.2018.38.6.591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piao Z, Kim HJ, Choi JY, Hong CR, Lee JW, Kang HJ et al (2016) Effect of FOXP3 polymorphism on the clinical outcomes after allogeneic hematopoietic stem cell transplantation in pediatric acute leukemia patients. Int Immunopharmacol 31:132–139. https://doi.org/10.1016/j.intimp.2015.12.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present article was extracted from the thesis written by Mrs. Zahra Ghasemi and was supported by grant no. 17355 from Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Amirghofran.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, Z., Kalantar, K. & Amirghofran, Z. The role of FOXP3 rs3761548 and rs2294021 polymorphisms in pediatrics acute lymphoblastic leukemia: association with risk and response to therapy. Mol Biol Rep 48, 1139–1150 (2021). https://doi.org/10.1007/s11033-021-06154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06154-x

Keywords

Navigation