Skip to main content

Advertisement

Log in

A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Previous literature supports the variations in microRNAs expression levels among lymphoma patients due to EBV infection. These alterations can be observed in both EBV-encoded-microRNAs and EBV-induced cellular microRNAs. Moreover, changes in the microRNA profile could be significant in disease progression. This study aimed to assess published literature to obtain a microRNA profile for both EBV-encoded microRNAs and EBV-induced cellular microRNAs among lymphoma patients. We searched common available electronic databases by using relevant keywords. The result demonstrated that EBV infection could alter the microRNA expression levels among lymphoma patients. In Burkitt lymphoma, hsa-miR197 and miR510 were most frequently assessed human micro RNAs. Also, miR-BART6-3P and miR-BART17-5P were the most frequent viral micro RNAs in Burkitt lymphoma. Other human important micro RNAs were hsa-miR155 (in Diffuse large B cell lymphoma (DLBCL)), hsa-miR145 (in Nasal natural killer T cell lymphoma (NNKTCL)), miR-96, miR-128a, miR-128b, miR-129, and miR-205 (in Classic Hodgkin lymphoma (CHL)), miR-21, miR-142-3P, miR-126, miR-451 and miR-494-3P (in Nasal natural killer cell lymphoma (NNKCL)). Also, viral assessed micro RNAs were miR-BART1-5P (in DLBCL and NNKTCL), miR-BART-5 (in CHL), and EBV-miR-BART20-5P (in NNKCL). In conclusion, it could be suggested that EBV-encoded-microRNAs and EBV-induced cellular-microRNAs can be utilized as helpful factors for different types of lymphoma diagnoses or prognostic factors. Moreover, the mentioned microRNAs can also be promising therapeutic targets and can be used to modulate the oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta (BBA): Mol Cell Res 1803(11):1231–1243

    Article  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hassani A, Khan G (2019) Epstein-Barr virus and miRNAs: partners in crime in the pathogenesis of multiple sclerosis? Front Immunol 10:695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R et al (2011) Epstein–Barr virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410(1):64–75

    Article  CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  7. Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L (2018) Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 14(5):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou P, Kawada J, Pesnicak L, Cohen JI (2007) Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81(18):10029–10036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pannone G, Zamparese R, Pace M, Pedicillo MC, Cagiano S, Somma P et al (2014) The role of EBV in the pathogenesis of Burkitt’s lymphoma: an Italian hospital based survey. Infect Agents Cancer 9(1):34

    Article  Google Scholar 

  10. Roschewski M, Wilson WH (2012) EBV-associated lymphomas in adults. Best Pract Res Clin Haematol 25(1):75–89

    Article  PubMed  PubMed Central  Google Scholar 

  11. Young LS, Murray PG (2003) Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22(33):5108–5121

    Article  CAS  PubMed  Google Scholar 

  12. Rickinson A, Kieff E (2007) Epstein-Barr virus. Fields Virol 2:2655–2700

    Google Scholar 

  13. Rickinson A (2006) Epstein-Barr virus and its replication. Virology 2:2603–2654

    Google Scholar 

  14. Carbone A, Gloghini A, Dotti G (2008) EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 13(5):577

    Article  PubMed  Google Scholar 

  15. Kieff E (1996) Epstein-Barr virus and its replication. In: Fields virology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  16. Mani H, Jaffe ES (2009) Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma 9(3):206–216

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lung RW-M, Tong JH-M, Sung Y-M, Leung P-S, Ng DC-H, Chau S-L et al (2009) Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 11(11):1174–IN17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen JI (2000) Epstein–Barr virus infection. N Engl J Med 343(7):481–492

    Article  CAS  PubMed  Google Scholar 

  19. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581

    Article  CAS  PubMed  Google Scholar 

  20. Triboulet R, Mari B, Lin Y-L, Chable-Bessia C, Bennasser Y, Lebrigand K et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315(5818):1579–1582

    Article  CAS  PubMed  Google Scholar 

  21. Ambrosio MR, Navari M, Di Lisio L, Leon EA, Onnis A, Gazaneo S et al (2014) The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agents Cancer 9(1):12

    Article  Google Scholar 

  22. Piccaluga PP, Navari M, De Falco G, Ambrosio MR, Lazzi S, Fuligni F et al (2016) Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget 7(1):224

    Article  PubMed  Google Scholar 

  23. Zhou L, Bu Y, Liang Y, Zhang F, Zhang H, Li S (2016) Epstein-Barr Virus (EBV)-BamHI-A rightward transcript (BART)-6 and cellular microRNA-142 synergistically compromise immune defense of host cells in EBV-positive burkitt lymphoma. Med Sci Monitor: Int Med J Exp Clin Res 22:4114

    Article  CAS  Google Scholar 

  24. Zhang YM, Yu Y, Zhao HP (2017) EBV-BART-6-3p and cellular microRNA-197 compromise the immune defense of host cells in EBV-positive Burkitt lymphoma. Mol Med Rep 15(4):1877–1883

    Article  CAS  PubMed  Google Scholar 

  25. Oduor CI, Movassagh M, Kaymaz Y, Chelimo K, Otieno J, Ong'echa JM et al (2017) Human and Epstein-barr virus miRNA profiling as predictive biomarkers for endemic Burkitt lymphoma. Front Microbiol 8:501

    Article  PubMed  PubMed Central  Google Scholar 

  26. Navari M, Etebari M, De Falco G, Ambrosio MR, Gibellini D, Leoncini L et al (2015) The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol 6:556

    Article  PubMed  PubMed Central  Google Scholar 

  27. Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84(22):11670–11678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8(1):e1002484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris-Arnold A, Arnold C, Schaffert S, Hatton O, Krams S, Esquivel C et al (2015) Epstein–Barr virus modulates host cell nicroRNA-194 to promote IL-10 production and B lymphoma cell survival. Am J Transplant 15(11):2814–2824

    Article  CAS  PubMed  Google Scholar 

  30. Kim JH, Kim WS, Park C (2012) Epstein–Barr virus latent membrane protein-1 protects B-cell lymphoma from rituximab-induced apoptosis through miR-155-mediated Akt activation and up-regulation of Mcl-1. Leukemia Lymphoma 53(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  31. Ayoubian H, Ludwig N, Fehlmann T, Menegatti J, Gröger L, Anastasiadou E et al (2019) Epstein-Barr virus infection of cell lines derived from diffuse large B-cell lymphomas alters microRNA loading of the Ago2 complex. J Virol 93(3):e01297–e01318

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Andrade TA, Evangelista AF, Campos AHF, Poles WA, Borges NM, Camillo CMC et al (2014) A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly. Oncotarget 5(23):11813

    Article  PubMed  PubMed Central  Google Scholar 

  33. Imig J, Motsch N, Zhu JY, Barth S, Okoniewski M, Reineke T et al (2010) microRNA profiling in Epstein–Barr virus-associated B-cell lymphoma. Nucleic Acids Res 39(5):1880–1893

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cao P, Zhang M, Wang L, Sai B, Tang J, Luo Z et al (2018) miR-18a reactivates the Epstein-Barr virus through defective DNA damage response and promotes genomic instability in EBV-associated lymphomas. BMC Cancer 18(1):1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T et al (2012) MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 7(8):e42193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen H-H, Huang W-T, Yang L-W, Lin C-W (2015) The PTEN-AKT-mTOR/RICTOR pathway in nasal natural killer cell lymphoma is activated by miR-494-3p via PTEN but inhibited by miR-142-3p via RICTOR. Am J Pathol 185(5):1487–1499

    Article  CAS  PubMed  Google Scholar 

  37. Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ et al (2006) Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45(2):147–153

    Article  CAS  PubMed  Google Scholar 

  38. Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balagué O et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111(5):2825–2832

    Article  CAS  PubMed  Google Scholar 

  39. Komabayashi Y, Kishibe K, Nagato T, Ueda S, Takahara M, Harabuchi Y (2017) Circulating Epstein-Barr virus–encoded micro-RNAs as potential biomarkers for nasal natural killer/T-cell lymphoma. Hematol Oncol 35(4):655–663

    Article  CAS  PubMed  Google Scholar 

  40. Ramakrishnan R, Donahue H, Garcia D, Tan J, Shimizu N, Rice AP et al (2011) Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One 6(11):e27271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin T-C, Liu T-Y, Hsu S-M, Lin C-W (2013) Epstein-Barr virus–encoded miR-BART20-5p Inhibits T-bet translation with secondary suppression of p53 in invasive Nasal NK/T-cell lymphoma. Am J Pathol 182(5):1865–1875

    Article  CAS  PubMed  Google Scholar 

  42. Martin-Perez D, Vargiu P, Montes-Moreno S, Leon E, Rodriguez-Pinilla S, Lisio L et al (2012) Epstein-Barr virus microRNAs repress BCL6 expression in diffuse large B-cell lymphoma. Leukemia 26(1):180

    Article  CAS  PubMed  Google Scholar 

  43. Xia T, O'Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB et al (2008) EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 68(5):1436–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu J, Cosmopoulos K, Pegtel M, Hopmans E, Murray P, Middeldorp J et al (2011) A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 7(8):e1002193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fink S, Gandhi M, Nourse J, Keane C, Jones K, Crooks P et al (2014) A comprehensive analysis of the cellular and EBV-specific microRNAome in primary CNS PTLD identifies different patterns among EBV-associated tumors. Am J Transplant 14(11):2577–2587

    Article  CAS  PubMed  Google Scholar 

  46. Huang W-T, Lin C-W (2014) EBV-Encoded miR-BART20-5p and miR-BART8 Inhibit the IFN-γ–STAT1 pathway associated with disease progression in Nasal NK-cell lymphoma. Am J Pathol 184(4):1185–1197

    Article  CAS  PubMed  Google Scholar 

  47. López-Facio KL, Eguía-Aguilar P, Valencia-Mayoral P, Pérezpeña-Díazconti M, Arenas-Huertero F (2013) Expression of BART-5, BART-16 and BART-22, and NF-κB factor in classic Hodgkin’s lymphoma in pediatric patients. Bol Med Hosp Infant Mex 70(2):98–106

    Google Scholar 

  48. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G et al (2012) Burkitt's lymphoma. Lancet 379(9822):1234–1244

    Article  PubMed  Google Scholar 

  49. Epstein MA (1964) Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  50. Geser A, De Thé G, Lenoir G, Day N, Williams E (1982) Final case reporting from the ugandan prospective study of the relationship between ebv and burktit's lymphoma. Int J Cancer 29(4):397–400

    Article  CAS  PubMed  Google Scholar 

  51. Epstein M, Achong B (1979) The relationship of the virus to Burkitt’s lymphoma. In: The Epstein-Barr Virus. Springer, Berlin, pp 321–337

    Chapter  Google Scholar 

  52. Magrath I, Jain V, Bhatia K (1992) Epstein-Barr virus and Burkitt's lymphoma. Semin Cancer Biol 3(5):285–295

    CAS  PubMed  Google Scholar 

  53. Chen Y, Gelfond JA, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10(1):407

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cho WC (2012) MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets 16(8):747–759

    Article  CAS  PubMed  Google Scholar 

  55. Nana-Sinkam SP, Croce CM (2011) MicroRNAs as therapeutic targets in cancer. Transl Res 157(4):216–225

    Article  CAS  PubMed  Google Scholar 

  56. Gandellini P, Profumo V, Folini M, Zaffaroni N (2011) MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 15(3):265–279

    Article  CAS  PubMed  Google Scholar 

  57. Ok CY, Li L, Xu-Monette ZY, Visco C, Tzankov A, Manyam GC et al (2014) Prevalence and clinical implications of Epstein–Barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin Cancer Res 20(9):2338–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park S, Lee J, Ko YH, Han A, Jun HJ, Lee SC et al (2007) The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood. J Am Soc Hematol 110(3):972–978

    CAS  Google Scholar 

  59. Green M, Michaels M (2013) Epstein–Barr virus infection and posttransplant lymphoproliferative disorder. Am J Transplant 13(s3):41–54

    Article  CAS  PubMed  Google Scholar 

  60. Beatty PR, Krams SM, Martinez OM (1997) Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol 158(9):4045–4051

    Article  CAS  PubMed  Google Scholar 

  61. Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24(50):7391–7393

    Article  CAS  PubMed  Google Scholar 

  62. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K et al (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277(24):21843–21850

    Article  CAS  PubMed  Google Scholar 

  63. Abe W, Nasu K, Tsuno A, Kawano Y, Narahara H (2016) Gynecol Minimally Invas Ther 5:106–108

    Article  Google Scholar 

  64. Young H, Bream J. (2007) IFN-γ: recent advances in understanding regulation of expression, biological functions, and clinical applications. Interferon: The 50th Anniversary: Springer, pp. 97–117

  65. Lanier LL (2008) Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 8(4):259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jaffe ES (2001) World Health Organization classification of tumours. In: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Vice-Chancellor for Research and Technology, Hormozgan University of Medical Sciences, Bandar Abbas, and Tehran University of Medical Sciences, Tehran, Iran. Also, we are sincerely thankful to our counsellors in Clinical Research Development Center of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SS and AF designed the study, carried out the search, study selection, data abstraction, analysis and drafted the manuscript. AT, AZ, AMZ and MZ carried out the search, study selection, data abstraction, analysis and drafted the manuscript. AT, SASI, and SASE participated in study selection, checked data abstraction and analysis. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Abbas Farahani.

Ethics declarations

Conflicts of interest/Competing interests

The authors report no declarations of interest.

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Zakeri, A., Tabibzadeh, A. et al. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep 48, 1801–1817 (2021). https://doi.org/10.1007/s11033-021-06152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06152-z

Keywords

Navigation