Simple Nested Allele-Specific approach with penultimate mismatch for precise species and sex identification of tiger and leopard

Abstract

Accurate species and sex identification of non-invasive and forensic samples of the tiger and leopard is still confusing when using the allele-specific methods. We designed allele-specific methods with penultimate nucleotide mismatch in a nested manner for the exact identification and double-checking of forensic samples. The mismatch design is a novel concept in species and sex identification, making the allele-specific targeting precise. We developed three sets of markers, a 365 bp outer and a 98 bp inner marker for nested tiger species identification assay, 136 bp leopard specific marker, and carnivore sex identification markers. We validated the method with tissue/blood forensic samples of various felids and herbivorous available in our lab and on known fecal samples from Vandalur Zoo. We also collected 37 scat samples at diverse stages of deterioration from the Mudumalai Tiger Reserve, Tamil Nadu, India. The 365 bp targeted markers resulted in 70.2% (n = 22; 22/37) amplification success, while the 98 bp FAM-labelled marker amplified 89% (n = 33; 33/37) scat samples independently. The 136 bp leopard markers answered four scat samples (11%) unrequited by the tiger specific markers. We evaluated species and the sex identification with these markers in another 190 non-invasive samples provided by the Mudumalai Tiger Reserve authorities. Among which 56.3% (n = 107) of samples were recognized as tiger (64 male and 43 female) and 38.9% (n = 74) as leopard (41 male and 33 female). The method supersedes any other previous methods in this regard by its high accuracy and simplicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The NCBI GenBank accessions used in the publication is acknowledged appropriately and provided in the supplementary material S1a. The samples were collected for the study following the regulations of the authority.

Code availability

All the software used in the present study are open source software and downloaded accordingly.

References

  1. 1.

    Chapron G, Miquelle DG, Lambert A, Goodrich JM, Legendre S, Clobert J (2008) The impact on tigers of poaching versus prey depletion. J Appl Ecol 45(6):1667–1674. https://doi.org/10.1111/j.1365-2664.2008.01538.x

    Article  Google Scholar 

  2. 2.

    Sharma K, Wright B, Joseph T, Desai N (2014) Tiger poaching and trafficking in India: estimating rates of occurrence and detection over four decades. Biol Conserv 179:33–39. https://doi.org/10.1016/j.biocon.2014.08.016

    Article  Google Scholar 

  3. 3.

    Sanderson EW, Forrest J, Loucks C, Ginsberg J, Dinerstein E, Seidensticker J, Bryja G (2010) Setting priorities for tiger conservation: 2005–2015. In: Tilson R, Nyhus PJ (eds) Tigers of the world, 2nd edn. William Andrew Publishing, Elsevier, New York, pp 143–161. https://doi.org/10.1016/B978-0-8155-1570-8.00009-8

    Google Scholar 

  4. 4.

    Karanth KU, Nichols JD (2011) Estimating tiger abundance from camera trap data: field surveys and analytical issues. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology. Springer, Tokyo, pp 97–117. https://doi.org/10.1007/978-4-431-99495-4_7

    Google Scholar 

  5. 5.

    Branicki W, Kupiec T, Pawlowski R (2003) Validation of cytochrome b sequence analysis as a method of species identification. J Forensic Sci 48(1):83–87. https://doi.org/10.1520/JFS2002128

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Oliveira R, Castro D, Godinho R, Luikart G, Alves PC (2010) Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from South-Western Europe. Conserv Genet 11(3):1023–1032. https://doi.org/10.1007/s10592-009-9947-4

    Article  Google Scholar 

  7. 7.

    Maroju PA, Yadav S, Kolipakam V, Singh S, Qureshi Q, Jhala Y (2016) Schrodinger’s scat: a critical review of the currently available tiger (Panthera Tigris) and leopard (Panthera pardus) specific primers in India, and a novel leopard specific primer. BMC Genet 17(1):1–6. https://doi.org/10.1186/s12863-016-0344-y

    Article  Google Scholar 

  8. 8.

    Naha D, Dash SK, Sathyakumar S (2020) Inaccurate methods and erroneous conclusions drawn on human-leopard coexistence in India–Response to Puri et al., 2020 “The balancing act: maintaining leopard–wild prey equilibrium could offer economic benefits to people in a shared forest landscape of Central India”. Ecol Indic 117:106632. https://doi.org/10.1016/j.ecolind.2020.106632

  9. 9.

    Hines JE, Nichols JD, Royle JA, MacKenzie DI, Gopalaswamy AM, Kumar NS, Karanth KU (2010) Tigers on trails: occupancy modeling for cluster sampling. Ecol Appl 20(5):1456–1466

    CAS  Article  Google Scholar 

  10. 10.

    Karanth KU, Gopalaswamy AM, Kumar NS, Vaidyanathan S, Nichols JD, MacKenzie DI (2011) Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J Appl Ecol 48(4):1048–1056. https://doi.org/10.1111/j.1365-2664.2011.02002.x

    Article  Google Scholar 

  11. 11.

    Puri M, Srivathsa A, Karanth KK, Patel I, Kumar NS (2020) The balancing act: maintaining leopard-wild prey equilibrium could offer economic benefits to people in a shared forest landscape of Central India. Ecol Indic 110:105931. https://doi.org/10.1016/j.ecolind.2019.105931

    Article  Google Scholar 

  12. 12.

    Rosel PE (2003) PCR-based sex determination in Odontocete cetaceans. Conserv Genet 4:647–649. https://doi.org/10.1023/A:1025666212967

    CAS  Article  Google Scholar 

  13. 13.

    Wei K, Zhang Z, Zhang W, Xu X, Liang X, He G, Shen F, Zhang L, Hou R, Yue B (2008) PCR-CTPP: a rapid and reliable genotyping technique based on ZFX/ZFY alleles for sex identification of tiger (Panthera tigris) and four other endangered felids. Conserv Genet 9(1):225–228. https://doi.org/10.1007/s10592-006-9279-6

    CAS  Article  Google Scholar 

  14. 14.

    Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7(1):48. https://doi.org/10.1186/1471-2156-7-48

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hsieh HM, Chiang HL, Tsai LC, Lai SY, Huang NE, Linacre A, Lee JCI (2001) Cytochrome b gene for species identification of the conservation animals. Forensic Sci Int 122(1):7–18. https://doi.org/10.1016/S0379-0738(01)00403-0

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wan QH, Fang SG (2003) Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 131(1):75–78. https://doi.org/10.1016/S0379-0738(02)00398-5

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Mukherjee N, Mondol S, Andheria A, Ramakrishnan U (2007) Rapid multiplex PCR based species identification of wild tigers using non-invasive samples. Conserv Genet 8(6):1465–1470. https://doi.org/10.1007/s10592-007-9289-z

    CAS  Article  Google Scholar 

  18. 18.

    Mondol S, Navya R, Athreya V, Sunagar K, Selvaraj VM, Ramakrishnan U (2009) A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet 10(1):79. https://doi.org/10.1186/1471-2156-10-79

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kitpipit T, Linacre A, Tobe SS (2009) Tiger species identification based on molecular approach. Forensic Sci Int 2(1):310–312. https://doi.org/10.1016/j.fsigss.2009.08.041

    Article  Google Scholar 

  20. 20.

    Kitpipit T, Tobe SS, Kitchener AC, Gill P, Linacre A (2012) The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification—implications for forensic purposes. Forensic Sci Int Genet 6(2):250–257. https://doi.org/10.1016/j.fsigen.2011.06.001

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zou ZT, Uphyrkina OV, Fomenko P, Luo SJ (2015) The development and application of a multiplex short tandem repeat (STR) system for identifying subspecies, individuals and sex in tigers. Integr Zool 10(4):376–388. https://doi.org/10.1111/1749-4877.12136

    Article  PubMed  Google Scholar 

  22. 22.

    Wetton JH, Tsang CS, Roney CA, Spriggs AC (2002) An extremely sensitive species-specific ARMS PCR test for the presence of tiger bone DNA. Forensic Sci Int 126(2):137–144. https://doi.org/10.1016/S0379-0738(02)00045-2

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wetton JH, Tsang CS, Roney CA, Spriggs AC (2004) An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 140(1):139–145. https://doi.org/10.1016/j.forsciint.2003.11.018

    Article  PubMed  Google Scholar 

  24. 24.

    Najmabad H, Teymourian S, Jalilnezhad S, Azad M, Khatibi T, Neyshabouri M, Pourfarzad F, Oberkanins C, Krugluger W (2001) Amplification refractory mutation system (ARMS) and reverse hybridization in the detection of beta-thalassemia mutations. Arch Iran Med 4(4):165–170

    Google Scholar 

  25. 25.

    Bhavanishankar M, Reddy PA, Gour DS, Shivaji S (2013) Validation of non-invasive genetic identification of two elusive, sympatric, sister-species–tiger (Panthera tigris) and leopard (Panthera pardus). Curr Sci 104(8):1063–1067 https://www.jstor.org/stable/24092194

    CAS  Google Scholar 

  26. 26.

    Wangkumhang P, Chaichoompu K, Ngamphiw C, Ruangrit U, Chanprasert J, Assawamakin A, Tongsima S (2007) WASP: a web-based allele-specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics 8(1):1–9. https://doi.org/10.1186/1471-2164-8-275

    CAS  Article  Google Scholar 

  27. 27.

    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Koressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M (2018) Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34(11):1937–1938. https://doi.org/10.1093/bioinformatics/bty036

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kalendar R, Khassenov B, Ramankulov E, Samuilova O, Ivanov KI (2017) FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109:312–319. https://doi.org/10.1016/j.ygeno.2017.05.005

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(2):W43–W46. https://doi.org/10.1093/nar/gkm234

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    San Millán RM, Martínez-Ballesteros I, Rementeria A, Garaizar J, Bikandi J (2013) Online exercise for the design and simulation of PCR and PCR-RFLP experiments. BMC Res Notes 6:513. https://doi.org/10.1186/1756-0500-6-513

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mukherjee S, Ashalakshmi CN, Home C, Ramakrishnan U (2010) An evaluation of the PCR-RFLP technique to aid molecular-based monitoring of felids and canids in India. BMC Res Notes 3(1):159. https://doi.org/10.1186/1756-0500-3-159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sharma V, Sharma CP, Kumar VP, Goyal SP (2016) Pioneer identification of fake tiger claws using morphometric and DNA-based analysis in wildlife forensics in India. Forensic Sci Int 266:226–233. https://doi.org/10.1016/j.forsciint.2016.05.024

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Medrano RFV, de Oliveira CA (2014) Guidelines for the tetra-primer ARMS–PCR technique development. Mol Biotechnol 56:599–608. https://doi.org/10.1007/s12033-014-9734-4

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Rejali NA, Moric E, Wittwer CT (2018) The effect of single mismatches on primer extension. Clin Chem 64(5):801–809. https://doi.org/10.1373/clinchem.2017.282285

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bui M, Liu Z (2009) Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping. Plant Methods 5:1. https://doi.org/10.1186/1746-4811-5-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Little S (1995) Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 7(1):9–8. https://doi.org/10.1002/0471142905.hg0908s07

    Article  Google Scholar 

  39. 39.

    Hartwell SK, Srisawang B, Kongtawelert P, Christian GD, Grudpan K (2005) Review on screening and analysis techniques for hemoglobin variants and thalassemia. Talanta 65(5):1149–1161. https://doi.org/10.1016/j.talanta.2004.09.013

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Touroutine D, Tanis JE (2020) A rapid, super-selective method for detection of single nucleotide Cariants in Caenorhabditis elegans. Genetics 261(2):343–352. https://doi.org/10.1534/genetics.120.303553

    CAS  Article  Google Scholar 

  41. 41.

    Aasen E, Medrano JF (1990) Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Nat Biotechnol 8(12):1279–1281. https://doi.org/10.1038/nbt1290-1279

    CAS  Article  Google Scholar 

  42. 42.

    Sullivan KM, Mannucci A, Kimpton CP, Gill P (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of XY homologous gene amelogenin. Bio Techniques 15(4):636–638

    CAS  Google Scholar 

  43. 43.

    Pomp D, Good BA, Geisert RD, Corbin CJ, Conley AJ (1995) Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or-11 pig embryos. Anim Sci J 73(5):1408–1415. https://doi.org/10.2527/1995.7351408x

    CAS  Article  Google Scholar 

  44. 44.

    Bryja J, Konecny A (2003) Fast sex identification in wild mammals using PCR amplification of the Sry gene. Folia Zool 52(3):269–274

    Google Scholar 

  45. 45.

    Pilgrim KL, McKelvey KS, Riddle AE, Schwartz MK (2005) Felid sex identification based on non-invasive genetic samples. Mol Ecol Notes 5(1):60–61. https://doi.org/10.1111/j.1471-8286.2004.00831.x

    CAS  Article  Google Scholar 

  46. 46.

    Thangaraj K, Reddy AG, Singh L (2002) Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis? Int J Legal Med 116(2):121–123. https://doi.org/10.1007/s00414-001-0262-y

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Shaw CN, Wilson PJ, White BN (2003) A reliable molecular method of gender determination for mammals. J Mammal 84(1):123–128. https://doi.org/10.1644/1545-1542(2003)084<0123:ARMMOG>2.0.CO;2

    Article  Google Scholar 

  48. 48.

    Rodgers TW, Janecka JE (2013) Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur J Wildl Res 59(1):1–16. https://doi.org/10.1007/s10344-012-0675-6

    Article  Google Scholar 

  49. 49.

    DeCandia A, Gaughran S, Caragiulo A, Amato G (2016) A novel molecular method for non-invasive sex identification of order Carnivora. Conserv Genet Resour 8(2):119–121. https://doi.org/10.1007/s12686-016-0525-z

    Article  Google Scholar 

  50. 50.

    Alibhai S, Jewell Z, Evans J (2017) The challenge of monitoring elusive large carnivores: an accurate and cost-effective tool to identify and sex pumas (Puma concolor) from footprints. PLoS One 12(3):e0172065. https://doi.org/10.1371/journal.pone.0172065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Tamil Nadu Forest Department and Mudumalai Tiger Conservation Foundation for giving permission and samples vide permission number WL5 (A) 034236/2015 Dated 15-12-2015, Permit No. 71/2015 and Ref. No. WL (A)/ 3386/2019 dated 05-02-2019 Permit No 08/2019. The support of Dr. Shekhar Kumar Niraj IFS, Mr. Srinivas R Reddy IFS, Dr. Raghuram Singh IFS, Mr. Ameer Haja and Dr. S Nandini are deeply acknowledged.

Funding

No funding was received for conducting this study.

Author information

Affiliations

Authors

Contributions

The first author (GN), and second author (PMB) implemented the work in the lab and prepared basic manuscript. The third author (TTS), forth author (BR) and eighth author (GM) done the field works. The fifth author (RA) done the bioinformatics work and lab support. The sixth author (KKK), seventh author (GDK) and the ninth author (MJ) developed and evaluated the concepts and corrected the manuscript. The last author (RS) obtained permission, finalised and approved the manuscripts and concepts.

Corresponding author

Correspondence to Raveendranathanpillai Sanil.

Ethics declarations

Conflict of interest

The authors do not have any financial or non financial conflict of interest related to this publication.

Ethical approval

We obtained permission from the Tamil Nadu forest Department via order numbers WL5(A) 034236/2015 dated 15–12-2015 and Ref.No.WL (A)/ 3386/2019 dated 05-02-2019 Permit No 08/2019.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nittu, G., Bhavana, P.M., Shameer, T.T. et al. Simple Nested Allele-Specific approach with penultimate mismatch for precise species and sex identification of tiger and leopard. Mol Biol Rep 48, 1667–1676 (2021). https://doi.org/10.1007/s11033-021-06139-w

Download citation

Keywords

  • AS technique
  • Tiger species identification
  • Leopard species identification
  • Nested PCR
  • Molecular gender identification