Skip to main content
Log in

Programmed cell death 1 (PDCD1) gene haplotypes and susceptibility of patients to basal cell carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 March 2021

This article has been updated

Abstract

Programmed death-1 (PD-1), as an immunoinhibitory receptor encoded by programmed cell death-1 (PDCD1) gene, has a pivotal role in tolerance to self-antigens. Mutations of PDCD1 may participate in susceptibility to basal cell carcinoma (BCC) as the most common of skin cancer. We studied the impacts of two single nucleotide polymorphisms (SNPs) within PDCD1 and their haplotypes in BCC susceptibility in an Iranian population. The blood samples were collected from 210 BCC and 220 healthy individuals. After the extraction of genomic DNA, the genotypes and alleles of PD1.1 G/A (rs36084323) and PD1.6 G/A (rs10204525) SNPs were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Four haplotypes were estimated by these SNPs. Our data revealed that genotype and allele frequencies of PD1.1 and PD1.6 polymorphisms in BCC patients were similar to those in healthy individuals. The results of estimated haplotypes for PDCD1 indicated that GG and AA haplotypes of PDCD1 had protective effects on BCC susceptibility (OR = 0.7, 95% CI = 0.51–0.96, p = 0.03 and OR = 0.57, 95% CI = 0.35–0.91, p = 0.02, respectively), while GA and AG haplotypes served as the risk factors for developing BCC (OR = 1.76, 95% CI = 1.09–2.84, p = 0.02 and OR = 3.87, 95% CI = 1.95–7.69, p = <0.001, respectively). Based on these findings, frequency distributions of PDCD1 haplotypes have important roles in the determination of BCC development in the Iranian population. However, larger multicenter studies are required to confirm this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during the study are included in this published article.

Change history

References

  1. Sreekantaswamy S, Endo J, Chen C, Butler D, Morrison L, Linos E (2019) Aging and the treatment of basal cell carcinoma. Clin Dermatol 37(4):373–378

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB et al (2019) Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur J Cancer 118:10–34

    Article  CAS  PubMed  Google Scholar 

  3. Pópulo H, Boaventura P, Vinagre J, Batista R, Mendes A, Caldas R et al (2014) TERT promoter mutations in skin cancer: the effects of sun exposure and X-irradiation. J Invest Dermatol 134(8):2251–2257

    Article  PubMed  Google Scholar 

  4. Cameron MC, Lee E, Hibler BP, Barker CA, Mori S, Cordova M et al (2019) Basal cell carcinoma: epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol 80(2):303–317

    Article  PubMed  Google Scholar 

  5. Marzuka AG, Book SE (2015) Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med 88(2):167–179

    PubMed  PubMed Central  Google Scholar 

  6. Wozniak-Rito A, Zalaudek I, Rudnicka L (2018) Dermoscopy of basal cell carcinoma. Clin Exp Dermatol 43(3):241–247

    Article  CAS  PubMed  Google Scholar 

  7. Tilli CM, Van Steensel MA, Krekels GA, Neumann HA, Ramaekers FC (2005) Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 152(6):1108–1124

    Article  CAS  PubMed  Google Scholar 

  8. Oh S-T, Lee J, Yang K-J, Bae J-M, Park H-J, Kim J-W et al (2018) Increased immunoreactivity of LGR4 in histologically aggressive basal cell carcinoma. Ann Dermatol 30(5):630–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutiérrez García-Rodrigo C, Fargnoli MC (2017) Understanding the molecular genetics of basal cell carcinoma. Int J Mol Sci 18(11):2485

    Article  PubMed Central  Google Scholar 

  10. Zak-Prelich M, Narbutt J, Sysa-Jedrzejowska A (2004) Environmental risk factors predisposing to the development of basal cell carcinoma. Dermatol Surg 30(2 Pt 2):248–252

    PubMed  Google Scholar 

  11. Zhang N, Tu J, Wang X, Chu QJI (2019) Programmed cell death-1/programmed cell death ligand-1 checkpoint inhibitors: differences in mechanism of action. Immunotherapy 11(5):429–441

    Article  CAS  PubMed  Google Scholar 

  12. Agina HA, Ehsan NA, Abd-Elaziz TA, Abd-Elfatah GA, Said EM, Sira MMJC et al (2019) Hepatic expression of programmed death-1 (PD-1) and its ligand, PD-L1, in children with autoimmune hepatitis: relation to treatment response. Clin Exp Hepatol 5(3):256

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sniadecki M, Swierzko A, Dabkowski M, Orlowska-Volk M, Wycinka E, Klasa-Mazurkiewicz D et al (2019) New therapeutic approaches in the treatment of node-positive cervical cancer patients based on molecular targets: a systematic review. Ginekol Pol 90(6):336–345

    Article  PubMed  Google Scholar 

  14. Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death-1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106

    Article  CAS  PubMed  Google Scholar 

  15. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23(12):2341–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328):328rv4–328rv4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali M-AA et al (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12(7):663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng L, Gyorffy B, Na F, Chen B, Lan J, Xue J et al (2015) Association of PDCD1 and CTLA-4 gene expression with clinicopathological factors and survival in non–small-cell lung cancer: results from a large and pooled microarray database. J Thorac Oncol 10(7):1020–1026

    Article  CAS  PubMed  Google Scholar 

  19. Dong Y, Sun Q, Zhang X (2017) PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget 8(2):2171

    Article  PubMed  Google Scholar 

  20. Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, Sohn C (2017) PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 40(5):294–297

    Article  PubMed  Google Scholar 

  21. Suh KJ, Kim SH, Kim YJ, Kim M, Keam B, Kim TM et al (2018) Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunol Immunother 67(3):459–470

    Article  CAS  PubMed  Google Scholar 

  22. McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2(5):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gatalica Z, Snyder C, Maney T (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarker Prev 23(12):2965–2970

    Article  CAS  Google Scholar 

  24. Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H, Desai M et al (2016) Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat Commun 7:12510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Liang L, De Vivo I, Tang JY, Han J (2016) Pathway analysis of expression-related SNPs on genome-wide association study of basal cell carcinoma. Oncotarget 7(24):36885

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hua Z, Li D, Xiang G, Xu F, Jie G, Fu Z et al (2011) PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat 129(1):195–201

    Article  CAS  PubMed  Google Scholar 

  27. Braun-Prado K, Petzl-Erler ML (2007) Programmed cell death 1 gene (PDCD1) polymorphism and pemphigus foliaceus (fogo selvagem) disease susceptibility. Genet Mol Biol 30(2):314–321

    Article  CAS  Google Scholar 

  28. Fathi F, Ebrahimi M, Eslami A, Hafezi H, Eskandari N, Motedayyen H (2019) Association of programmed death-1 gene polymorphisms with the risk of basal cell carcinoma. Int J Immunogenet 46(6):444–450

    Article  CAS  PubMed  Google Scholar 

  29. Fathi F, Sadeghi E, Lotfi N, Hafezi H, Ahmadi M, Mozafarpoor S et al (2020) Effects of the programmed cell death 1 (PDCD1) polymorphisms in susceptibility to systemic lupus erythematosus. Int J Immunogenet 47(1):57–64

    Article  CAS  PubMed  Google Scholar 

  30. Shamsdin SA, Karimi MH, Hosseini SV, Geramizadeh B, Fattahi MR, Mehrabani D et al (2018) Associations of ICOS and PD. 1 gene variants with colon cancer risk in the Iranian population. Asian Pacific J Cancer Prev 19(3):693

    CAS  Google Scholar 

  31. Bichakjian CK, Olencki T, Aasi SZ, Alam M, Andersen JS, Berg D et al (2016) Basal cell skin cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 14(5):574–597

    Article  Google Scholar 

  32. D’incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L et al (2015) PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer 112(1):95

    Article  PubMed  Google Scholar 

  33. Iwasaki JK, Srivastava D, Moy RL, Lin HJ, Kouba DJ (2012) The molecular genetics underlying basal cell carcinoma pathogenesis and links to targeted therapeutics. J Am Acad Dermatol 66(5):e167–ee78

    Article  CAS  PubMed  Google Scholar 

  34. De Marchi P, Melendez ME, Laus AC, Kuhlmann PA, de Carvalho AC, Arantes LMR et al (2019) The role of single-nucleotide polymorphism (SNPs) in toxicity of induction chemotherapy based on cisplatin and paclitaxel in patients with advanced head and neck cancer. Oral Oncol 98:48–52

    Article  PubMed  Google Scholar 

  35. Salmaninejad A, Khoramshahi V, Azani A, Soltaninejad E, Aslani S, Zamani MR et al (2018) PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 70(2):73–86

    Article  CAS  PubMed  Google Scholar 

  36. Mahmoudi M, Rezaiemanesh A, Salmaninejad A, Harsini S, Poursani S, Bahrami T et al (2015) PDCD1 single nucleotide genes polymorphisms confer susceptibility to juvenile-onset systemic lupus erythematosus. Autoimmunity 48(7):488–493

    Article  PubMed  Google Scholar 

  37. De Re V, Tornesello ML, De Zorzi M, Caggiari L, Pezzuto F, Leone P et al (2019) Clinical significance of polymorphisms in immune response genes in hepatitis C-related hepatocellular carcinoma. Front Microbiol 10:475

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gomez G, Rinck-Junior J, Da Silva D, Mamoni R, Lourenço G, Moraes A et al (2017) 1230PModulation of risk and prognosis of cutaneous melanoma patients by genetic polymorphisms on PDCD1 gene. Ann Oncol 28(Suppl_5). https://doi.org/10.1093/annonc/mdx377.016

  39. Li Y, Zhang H-L, Kang S, Zhou R-M, Wang N (2017) The effect of polymorphisms in PD-1 gene on the risk of epithelial ovarian cancer and patients’ outcomes. Gynecol Oncol 144(1):140–145

    Article  CAS  PubMed  Google Scholar 

  40. Da L-S, Zhang Y, Zhang C-J, Bu L-J, Zhu Y-Z, Ma T et al (2018) The PD-1 rs36084323 A > G polymorphism decrease cancer risk in Asian: a meta-analysis. Pathol Res Pract 214(11):1758–1764

    Article  CAS  PubMed  Google Scholar 

  41. Fathi F, Faghih Z, Khademi B, Kayedi T, Erfani N, Gahderi A (2019) PD-1 haplotype combinations and susceptibility of patients to squamous cell carcinomas of head and neck. Immunol Investig 48(1):1–10

    Article  CAS  Google Scholar 

  42. Ren H-T, Li Y-M, Wang X-J, Kang H-F, Jin T-B, Ma X-B et al (2016) PD-1 rs2227982 polymorphism is associated with the decreased risk of breast cancer in Northwest Chinese Women: a hospital-based observational study. Medicine 95(21):e3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ni R, Ihara K, Miyako K, Kuromaru R, Inuo M, Kohno H et al (2007) PD-1 gene haplotype is associated with the development of type 1 diabetes mellitus in Japanese children. Hum Genet 121(2):223–232

    Article  CAS  PubMed  Google Scholar 

  44. Kong EKP, Prokunina-Olsson L, Wong WHS, Lau CS, Chan TM, Alarcón-Riquelme M et al (2005) A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 52(4):1058–1062

    Article  CAS  PubMed  Google Scholar 

  45. Ishizaki Y, Yukaya N, Kusuhara K, Kira R, Torisu H, Ihara K et al (2010) PD1 as a common candidate susceptibility gene of subacute sclerosing panencephalitis. Hum Genet 127(4):411–419

    Article  CAS  PubMed  Google Scholar 

  46. Zhang G, Li N, Zhang P, Li F, Yang C, Zhu Q et al (2014) PD-1 mRNA expression is associated with clinical and viral profile and PD1 3′-untranslated region polymorphism in patients with chronic HBV infection. Immunol Lett 162(1):212–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the collaborations of all subjects in the study.

Funding

This study was supported by grant (Grant No: 98019) from Kashan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

FF and BZ carried out some of the experiments. AP participated in the design of some experiments. SM participated in the disease diagnosis and sample collections. ES performed some of the experiments and participated in statistical analysis of the data. HM participated in the study design, drafted the manuscript, and obtained funding for the work. The authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Hossein Motedayyen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This work was confirmed by the Ethics Committee of Kashan University of Medical Sciences (ethic code: IR.KAUMS.MEDNT.REC.1398.037).

Informed consent

Informed consent was obtained from all subjects before entering the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, F., Zamani, B., Piroozmand, A. et al. Programmed cell death 1 (PDCD1) gene haplotypes and susceptibility of patients to basal cell carcinoma. Mol Biol Rep 48, 2047–2052 (2021). https://doi.org/10.1007/s11033-020-06115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06115-w

Keywords

Navigation