Skip to main content
Log in

Hyaluronic acid-binding insulin-like growth factor-1: Creation of a gene encoding a bifunctional fusion protein

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chondrogenic growth factors are promising therapeutic agents for articular cartilage repair. A persistent impediment to fulfilling this promise is a limited ability to apply and retain the growth factors within the region of cartilage damage that is in need of repair. Current therapies successfully deliver cells and/or matrices, but growth factors are subject to diffusion into the joint space and then loss from the joint. To address this problem, we created a novel gene that encodes a bifunctional fusion protein comprised by a matrix binding domain and a growth factor. The gene encodes the hyaluronic acid binding region of the cartilage matrix molecule, versican, and the chondrogenic growth factor, insulin-like growth factor-1 (IGF-1). We delivered the gene in an adeno-associated virus-based plasmid vector to articular chondrocytes. The cells synthesized and secreted the fusion protein gene product. The fusion protein bound to hyaluronic acid and retained the anabolic and mitogenic actions of IGF-1 on the chondrocytes. This proof-of-concept study suggests that the bifunctional fusion protein, in concert with chondrocytes and a hyaluronic acid-based delivery vehicle, may serve as an intra-articular therapy to help achieve articular cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

AG1:

Aggrecan G1 domain

AU:

Arbitrary unit

CM:

Conditioned medium

DMB:

Dimethylmethlyene blue

DMEM:

Dulbecco’s minimum essential medium

EDTA:

Ethylenediaminetetraacetic acid

F:

Forward primer

FBS:

Fetal bovine serum

G1:

Globular domain 1

GAG:

Glycosaminoglycan

HA:

Hyaluronic acid

HB-EGF:

Heparin-binding epidermal-like growth factor

HEK-293:

Human embryonic kidney 293 cells

HRP:

Horseradish peroxidase

IGF-1:

Insulin-like growth factor-1

Ka :

Equilibrium association constant

PBS:

Phosphate buffered saline

R:

Reverse primer

SDS:

Sodium dodecyl sulfate/sulphate

TBST:

Tris-buffered saline/Tween

VG1:

Versican G1 domain

References

  1. Buckwalter JA, Mankin HJ (1998) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–1342

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention (2010) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation–-United States, 2007–2009. MMWR – Morbid Mortal Week Report 59:1261–1265

    Google Scholar 

  3. Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl 43:129–132

    CAS  PubMed  Google Scholar 

  4. Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH (1988) Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys 267:416–425

    Article  CAS  Google Scholar 

  5. McQuillan DJ, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC (1986) Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J 240:423–430

    Article  CAS  Google Scholar 

  6. Trippel SB, Corvol MT, Dumontier MF, Rappaport R, Hung HH, Mankin HJ (1989) Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res 25:76–82

    Article  CAS  Google Scholar 

  7. Madry H, Zurakowski D, Trippel SB (2001) Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Ther 8:1443–1449

    Article  CAS  Google Scholar 

  8. Nixon AJ, Fortier LA, Williams J, Mohammed H (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 17:475–487. https://doi.org/10.1002/jor.1100170404

    Article  CAS  PubMed  Google Scholar 

  9. Guerne PA, Sublet A, Lotz M (1994) Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158:476–484

    Article  CAS  Google Scholar 

  10. Sah RL, Chen AC, Grodzinsky AJ, Trippel SB (1994) Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308:137–147

    Article  CAS  Google Scholar 

  11. Tyler JA (1989) Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J 260:543–548

    Article  CAS  Google Scholar 

  12. Mankin HJ MV, Buckwalter JA, Iannotti JP, Ratcliffe A (2000) Orthopaedic basic science ed 2. AAOS, pp. 444–470.

  13. Matsumoto K, Shionyu M, Go M, Shimizu K, Shinomura T, Kimata K, Watanabe H (2003) Distinct interaction of versican/PG-M with hyaluronan and link protein. J Biol Chem 278:41205–41212

    Article  CAS  Google Scholar 

  14. Shi S, Grothe S, Zhang Y, O’Connor-McCourt MD, Poole AR, Roughley PJ, Mort JS (2004) Link protein has greater affinity for versican than aggrecan. J Biol Chem 279:12060–12066

    Article  CAS  Google Scholar 

  15. Wang QG, Hughes N, Cartmell SH, Kuiper NJ (2010) The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile. Eur Cell Mater 19:86–95. https://doi.org/10.22203/ecm.v019a09

    Article  CAS  PubMed  Google Scholar 

  16. Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P (2020) Hyaluronic acid: redefining its role. Cells. https://doi.org/10.3390/cells9071743

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prestwich GD (2007) Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach. J Cell Biochem 101:1370–1383

    Article  CAS  Google Scholar 

  18. Park H, Choi B, Hu J, Lee M (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9:4779–4786. https://doi.org/10.1016/j.actbio.2012.08.033

    Article  CAS  PubMed  Google Scholar 

  19. Sheu SY, Chen WS, Sun JS, Lin FH, Wu T (2013) Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. J Biomed Mater Res A 101:3457–3466. https://doi.org/10.1002/jbm.a.34653

    Article  CAS  PubMed  Google Scholar 

  20. Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA (2011) Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32:6425–6434. https://doi.org/10.1016/j.biomaterials.2011.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000165737.87628.5b

    Article  PubMed  Google Scholar 

  22. Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10:R132. https://doi.org/10.1186/ar2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, Marcacci M (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557. https://doi.org/10.1177/0363546511420688

    Article  PubMed  Google Scholar 

  24. Franceschi F, Longo UG, Ruzzini L, Marinozzi A, Maffulli N, Denaro V (2008) Simultaneous arthroscopic implantation of autologous chondrocytes and high tibial osteotomy for tibial chondral defects in the varus knee. Knee 15:309–313. https://doi.org/10.1016/j.knee.2008.04.007

    Article  PubMed  Google Scholar 

  25. Caldwell J (2000) A Safety Tolerability and Pharmacokinetic Study of Intra-Articular Recombinant Human Insulin-Like Growth Factor (rhIFG-I) in Patients with Severe Osteoarthritis (OA) of the Knee. America College of Rheumatology 64th Annual Scientific Meeting (2000) Abstract 941. Abstract Supplement 2000:S233

    Google Scholar 

  26. Miller RE, Grodzinsky AJ, Cummings K, Plaas AHK, Cole AA, Lee RT, Patwari P (2010) Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum 62:3686–3694. https://doi.org/10.1002/art.27709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorentz KM, Yang L, Frey P, Hubbell JA (2012) Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials 33:494–503. https://doi.org/10.1016/j.biomaterials.2011.09.088

    Article  CAS  PubMed  Google Scholar 

  28. Van Lonkhuyzen DR, Hollier BG, Shooter GK, Leavesley DI, Upton Z (2007) Chimeric vitronectin: insulin-like growth factor proteins enhance cell growth and migration through co-activation of receptors. Growth Factors 25:295–308. https://doi.org/10.1080/08977190701803752

    Article  CAS  PubMed  Google Scholar 

  29. Aguilar IN, Trippel S, Shi S, Bonassar LJ (2017) Customized biomaterials to augment chondrocyte gene therapy. Acta Biomater 53:260–267. https://doi.org/10.1016/j.actbio.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84:276–288

    Article  CAS  Google Scholar 

  31. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12:1171–1179

    Article  CAS  Google Scholar 

  32. Zhang Z, Li L, Yang W, Cao Y, Shi Y, Li X, Zhang Q (2017) The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits. Osteoarthritis Cartilage 25:309–320. https://doi.org/10.1016/j.joca.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  33. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 89:672–685

    Article  CAS  Google Scholar 

  34. Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Ludvigsen TC, Løken S, Solheim E, Strand T, Johansen O (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98:1332–1339. https://doi.org/10.2106/jbjs.15.01208

    Article  PubMed  Google Scholar 

  35. Niemeyer P, Laute V, John T, Becher C, Diehl P, Kolombe T, Fay J, Siebold R, Niks M, Fickert S, Zinser W (2016) The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee: a randomized clinical trial. Am J Sports Med 44:2005–2014. https://doi.org/10.1177/0363546516646092

    Article  PubMed  Google Scholar 

  36. Marcacci M, Zaffagnini S, Kon E, Visani A, Iacono F, Loreti I (2002) Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc 10:154–159. https://doi.org/10.1007/s00167-001-0275-6

    Article  CAS  PubMed  Google Scholar 

  37. Hevesi M, Krych AJ, Saris DBF (2019) Treatment of cartilage defects with the matrix-induced autologous chondrocyte implantation cookie cutter technique. Arthrosc Tech 8:e591–e596. https://doi.org/10.1016/j.eats.2019.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  38. Richardson JB, Wright KT, Wales J, Kuiper JH, McCarthy HS, Gallacher P, Harrison PE, Roberts S (2017) Efficacy and safety of autologous cell therapies for knee cartilage defects (autologous stem cells, chondrocytes or the two): randomized controlled trial design. Regen Med 12:493–501. https://doi.org/10.2217/rme-2017-0032

    Article  CAS  PubMed  Google Scholar 

  39. Park YB, Ha CW, Lee CH, Yoon YC, Park YG (2017) Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 6:613–621. https://doi.org/10.5966/sctm.2016-0157

    Article  CAS  PubMed  Google Scholar 

  40. Shi S, Mercer S, Eckert GJ, Trippel SB (2012) Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res 30:1026–1031. https://doi.org/10.1002/jor.22036

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, Grant/Award Number: AR047702; U.S. Department of Veterans Affairs, Grant/Award Number: I01 BX000447; Indiana University School of Medicine Research Infrastructure Fund; and Indiana University Department of Orthopaedic Surgery. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualizaton: SS and ST. Methodology: SS, ST, and CW. Validation: SS, CW and ST. Formal analysis: SS and ST. Investigation: SS and CW. Resources: ST. Writing – original draft: SS and ST. Writing-review & editing: SS, ST, and CW. Visualization: SS. Project administration: SS and ST. Funding acquisition: ST.

Corresponding author

Correspondence to Shuiliang Shi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The funders had no role in the design of the study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Wang, C. & Trippel, S.B. Hyaluronic acid-binding insulin-like growth factor-1: Creation of a gene encoding a bifunctional fusion protein. Mol Biol Rep 47, 9749–9756 (2020). https://doi.org/10.1007/s11033-020-06034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06034-w

Keywords

Navigation