Skip to main content

Advertisement

Log in

Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neuroinflammation is well established biomarker for the major neurodegenerative like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Cytokines/chemokines excite phospholipase A2 and cyclooxygenases (COX), facilitating the release of arachidonic acid (AA) and docosahexaenoic acid (DHA) from membrane glycerophospholipids, in which the former is oxidized to produce pro-inflammatory eicosanoids (prostaglandins, leukotrienes and thromboxane’s), which intensify the neuroinflammatory events in the brain. Similarly, resolvins and neuroprotectins are the metabolized products of docosahexaenoic acid, which exert an inhibitory effect on the production of eicosanoids. Furthermore, an oxidized product of arachidonic acid, lipoxin, is generated via 5-lipoxygenase (5-LOX) pathway, and contributes to the resolution of inflammation, along with anti-inflammatory actions. Moreover, DHA and its lipid mediators inhibit neuroinflammatory responses by blocking NF-κB, inhibiting eicosanoid production, preventing cytokine secretion and regulating leukocyte trafficking. Various epidemiological studies reported, elevated levels of COX-2 enzyme in patients with AD and PD, indicating its role in progression of the disease. Similarly, enhanced levels of 5-LOX and 12/15-LOX in PD models represent their role brain disorders, where the former is expressed in AD patients and the latter exhibits it involvement in PD. The present review elaborates the role of AA, DHA, eicosanoids and docosanoids, along with COX and LOX pathway which provides an opportunity to the researchers to understand the role of these lipid mediators in neurological disorders (AD and PD). The information gathered from the review will aid in facilitating the development of appropriate therapeutic options targeting COX and LOX pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50:2041–2056

    PubMed  Google Scholar 

  2. Joffre C, Grégoire S, Smedt VE, Acar N, Bretillon L, Nadjar A, Layé S (2016) Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Essent Fatty Acids 114:1–10

    CAS  PubMed  Google Scholar 

  3. Joffre C (2019) Polyunsaturated fatty acid metabolism in the brain and brain cells. IntechOpen. https://doi.org/10.5772/intechopen.88232

  4. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR (1993) Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 91(2):651–660

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bazinet RP, Layé S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12):771–785

    CAS  PubMed  Google Scholar 

  6. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192(8):1197–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rey C, Delpech JC, Madore C, Nadjar A, Greenhalgh AD, Amadieu C, Aubert A, Pallet V, Vaysse C, Layé S, Joffre C (2019) Dietary n-3 long chain PUFA supplementation promotes a proresolvingoxylipin profile in the brain. Brain Behav Immun 76:17–27

    CAS  PubMed  Google Scholar 

  8. Shalini SM, Ho CFY, Ng YK, Tong JX, Ong ES, Herr DR, Dawe GS, Ong WY (2018) Distribution of Alox15 in the rat brain and its role in prefrontal cortical resolvin D1 formation and spatial working memory. Mol Neurobiol 55(2):1537–1550

    CAS  PubMed  Google Scholar 

  9. Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, Trojanowski JQ, Lee VMY (2004) 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol 164(5):1655–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun L, Xu YW, Han J, Liang H, Wang N, Cheng Y (2015) 12/15-Lipoxygenase metabolites of arachidonic acid activatePPARgamma: a possible neuroprotective effect in ischemic brain. J Lipid Res 56(3):502–514

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bystrom J, Wray JA, Sugden MC, Holness MJ, Swales KE, Warner TD, Edin ML, Zeldin DC, Gilroy DW, Bishop-Bailey D (2011) Endogenous epoxygenases are modulators of monocyte/macrophage activity. PLoS One 6(10):e26591

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    CAS  PubMed  Google Scholar 

  13. Farooqui AA, Horrocks LA, Farooqui T (2000b) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106:1–29

    CAS  PubMed  Google Scholar 

  14. Farooqui AA, Rammohan KW, Horrocks LA (1989) Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann N Y Acad Sci 559:25–36

    CAS  PubMed  Google Scholar 

  15. Bochkov VN, Leitinger N (2003) Anti-inflammatory properties of lipid oxidation products. J Mol Med 81:613–626

    CAS  PubMed  Google Scholar 

  16. Lee H, Villacreses NE, Rapoport SI, Rosenberger TA (2004) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91:936–945

    CAS  PubMed  Google Scholar 

  17. Kolko M, Rodriguez de Turco EB, Diemer NH, Bazan NG (2002) Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. NeuroReport 13:1963–1966

    CAS  PubMed  Google Scholar 

  18. Sun GY, Xu J, Jensen MD, Simonyi A (2004b) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45:205–213

    CAS  PubMed  Google Scholar 

  19. Moses GSD, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28–38

    PubMed  PubMed Central  Google Scholar 

  20. Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  21. Gilroy DW, Newson J, Sawmynaden PA, Willoughby DA, Croxtall JD (2004) A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J 18:489–498

    CAS  PubMed  Google Scholar 

  22. Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76:855–864

    CAS  PubMed  Google Scholar 

  23. Chiang N, Arita M, Serhan CN (2005) Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids 73:163–177

    CAS  PubMed  Google Scholar 

  24. Machado FS, Johndrow JE, Esper L, Dias A, Bafica A, Serhan CN, Aliberti J (2006) Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med 12:330–334

    CAS  PubMed  Google Scholar 

  25. Kantarci A, Van Dyke TE (2003) Lipoxins in chronic inflammation. Crit Rev Oral Biol Med 14:4–12

    PubMed  Google Scholar 

  26. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10:1723–1740

    CAS  PubMed  Google Scholar 

  27. Serhan CN, Arita M, Hong S, Gotlinger K (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132

    CAS  PubMed  Google Scholar 

  28. Gronert K (2005) Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot Essent Fatty Acids 73:221–229

    CAS  PubMed  Google Scholar 

  29. Czapski GA, Czubowicz K, Strosznajder JB, Strosznajder RP (2016) The lipoxygenases: their regulation and implication in Alzheimer’s disease. Neurochem Res 41:243–257. https://doi.org/10.1007/s11064-015-1776-x

    Article  CAS  PubMed  Google Scholar 

  30. Breydo L, Wu JW, Uversky V (2012) Α-synuclein misfolding and Parkinson's disease. Biochim Biophys Acta 1822(2):261–285

    CAS  PubMed  Google Scholar 

  31. Ton TG, Jain S, Biggs ML, Thacker EL, Strotmeyer ES, Boudreau R, Newman AB, Longstreth WT Jr, Checkoway H (2012) Markers of inflammation in prevalent and incident Parkinson’s disease in the Cardiovascular Health Study. Parkinsonism Relat Disord 18(3):274–278

    PubMed  Google Scholar 

  32. Yamamoto S, Suzuki H, Ueda N (1997) Arachidonate 12-lipoxygenases. Prog Lipid Res 36(1):23–41

    CAS  PubMed  Google Scholar 

  33. Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47(2):147–155

    CAS  PubMed  Google Scholar 

  34. Amandi-Burgermeister E, Tibes U, Kaiser BM, Friebe WG, Scheuer WV (1997) Suppression of cytokine synthesis, integrin expression and chronic inflammation by inhibitors of cytosolic phospholipase A2. Eur J Pharmacol 326(2–3):237–250

    CAS  PubMed  Google Scholar 

  35. Sorensen HN, Treuter E, Gustafsson JA (1998) Regulation of peroxisome proliferator-activated receptors. Vitam Horm 54:121–166

    CAS  PubMed  Google Scholar 

  36. Hampson AJ, Grimaldi M (2002) 12-Hydroxyeicosatetrenoate (12-HETE) attenuates AMPA receptor-mediated neurotoxicity: evidence for a G-protein-coupled HETE receptor. J Neurosci 22(1):257–264

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chinnici CM, Yao Y, Ding T, Funk CD, Pratico D (2005) Absence of 12/15 lipoxygenase reduces brain oxidative stress in apolipoprotein E-deficient mice. Am J Pathol 167(5):1371–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zafiriou MP, Deva R, Ciccoli R, Siafaka-Kapadai A, Nigam S (2007) Biological role of hepoxilins: upregulation of phospholipid hydroperoxide glutathione peroxidase as a cellular response to oxidative stress? Prostaglandins Leukot Essent Fatty Acids 77(3–4):209–215

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24(47):10616–10627

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Giannopoulos PF, Joshi YB, Chu J, Pratico D (2013) The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 12(6):1082–1090

    CAS  PubMed  Google Scholar 

  41. Strosznajder JB, Cieslik M, Cakala M, Jesko H, Eckert A, Strosznajder RP (2011) Lipoxygenases and poly(ADP-ribose) polymerase in amyloid beta cytotoxicity. Neurochem Res 36(5):839–848

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lebeau A, Esclaire F, Rostene W, Pelaprat D (2001) Baicalein protects cortical neurons from beta-amyloid (25–35) induced toxicity. NeuroReport 12(10):2199–2202

    CAS  PubMed  Google Scholar 

  43. Aisen PS (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 1(5):279–284

    CAS  PubMed  Google Scholar 

  44. Lukiw WJ, Bazan NG (2006) Survival signalling in Alzheimer’s disease. Biochem Soc Trans 34(Pt 6):1277–1282

    CAS  PubMed  Google Scholar 

  45. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One 6(1):e15816

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH (2006) Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37:3014–3018

    PubMed  Google Scholar 

  47. Li Y, Maher P, Schubert DA (1997) Role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463

    CAS  PubMed  Google Scholar 

  48. Canals S, Casarejos MJ, De Bernardo S, Rodriguez-Martin E, Mena MA (2003) Nitric oxide triggers the toxicity due to glutathione depletion in midbrain cultures through 12-lipoxygenase. J Biol Chem 278:21542–21549

    CAS  PubMed  Google Scholar 

  49. Charlier C, Michaux C (2003) Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem 38(7–8):645–659

    CAS  PubMed  Google Scholar 

  50. Manev H et al (2011) Cyclooxygenases and 5-lipoxygenase in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 35(2):315–319

    CAS  PubMed  Google Scholar 

  51. Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Praticò D (2008) 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer’s disease. FASEB J 22(4):1169–1178

    CAS  PubMed  Google Scholar 

  52. Clària J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 92(21):9475–9479

    PubMed  PubMed Central  Google Scholar 

  53. Chu LS, Fang SH, Zhou Y, Yin YJ, Chen WY, Li JH, Sun J, Wang ML, Zhang WP, Wei EQ (2010) Minocycline inhibits 5-lipoxygenase expression and accelerates functional recovery in chronic phase of focal cerebral ischemia in rats. Life Sci 86(5–6):170–177

    CAS  PubMed  Google Scholar 

  54. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 93:2317–2321

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    CAS  PubMed  Google Scholar 

  56. Oka A, Takashima S (1997) Induction of cyclo-oxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport 8:1161–1164

    CAS  PubMed  Google Scholar 

  57. Braak H, Braak E (1991) Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  58. Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD, Mohs RC, Aisen PS, Pasinetti GM (2001) Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol 58:487–492

    CAS  PubMed  Google Scholar 

  59. Hoozemans JJ, Veerhuis R, Rozemuller AJ, Arendt T, Eikelenboom P (2004) Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis 15:492–499

    CAS  PubMed  Google Scholar 

  60. Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17:3588–3598

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305:217–228

    CAS  PubMed  Google Scholar 

  62. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    CAS  PubMed  Google Scholar 

  63. Hoozemans JJM et al (2008) Cyclooxygenase-1 and -2 in the different stages of Alzheimer’s disease pathology. Curr Pharm Des 14:1419–1427

    CAS  PubMed  Google Scholar 

  64. Bauer MK, Lieb K, Schulze-Osthoff K, Berger M, Gebicke-Haerter PJ, Bauer J et al (1997) Expression and regulation of cyclooxygenase-2 in rat microglia. Eur J Biochem 243:726–731

    CAS  PubMed  Google Scholar 

  65. Alvarez V, González P, Corao AI, Menéndez M, Lahoz CH, Martínez C, Calatayud M, Morales B, Coto E (2008) The Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene promoter is not associated with late onset Alzheimer disease. Alzheimer Dis Assoc Disord 22(2):177–180

    CAS  PubMed  Google Scholar 

  66. Aïd S, Bosetti F (2007) Gene expression of cyclooxygenase-1 and Ca(2+)-independent phospholipase A(2) is altered in rat hippocampus during normal aging. Brain Res Bull 73(1–3):108–113

    PubMed  PubMed Central  Google Scholar 

  67. Fujimi K, Noda K, Sasaki K, Wakisaka Y, Tanizaki Y, Iida M, Kiyohara Y, Kanba S, Iwaki T (2007) Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer’s disease: the Hisayama Study. Dement Geriatr Cogn Disord 23(6):423–431

    CAS  PubMed  Google Scholar 

  68. Kitamura Y, Shimohama S, Koike H, KakimuraJi Y et al (1999) Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem Biophys Res Commun 254(3):582–586

    CAS  PubMed  Google Scholar 

  69. Melnikova T, Savonenko A, Wang Q, Liang X, Hand T, Wu L, Kaufmann WE, Vehmas A, Andreasson KI (2006) Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer's disease in a sex-dimorphic pattern. Neuroscience 141(3):1149–1162

    CAS  PubMed  Google Scholar 

  70. Kukar T, Golde TE (2008) Possible mechanisms of action of NSAIDs and related compounds that modulate gamma-secretase cleavage. Curr Top Med Chem 8(1):47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mirza B, Hadberg H, Thomsen P, Moos T (2009) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Google Scholar 

  72. De Simone R, Ajmone-Cat MA, Minghetti L (2004) Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol Neurobiol 29:197–212

    PubMed  Google Scholar 

  73. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    CAS  PubMed  Google Scholar 

  74. Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH (2007) Marked microglial reaction in normal aging human substantianigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424

    PubMed  Google Scholar 

  75. Mcgeer PL, Itagaki S, Boyes BE, Mcgeer EG (1998) Reactive microglia are positive for Hla-Dr in the SubstantiaNigra of Parkinsons and Alzheimers-disease brains. Neurology 38:1285–1291

    Google Scholar 

  76. Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson’s disease neurodegeneration. Curr Neuropharmacol 8:62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129

    PubMed  Google Scholar 

  78. Dehmer T (2004) Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501

    CAS  PubMed  Google Scholar 

  79. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63:901–910

    CAS  PubMed  Google Scholar 

  80. Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16:724–739

    CAS  PubMed  Google Scholar 

  81. Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6

    PubMed  PubMed Central  Google Scholar 

  82. Sriram K, Miller DB, O'Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718

    CAS  PubMed  Google Scholar 

  83. Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    CAS  PubMed  Google Scholar 

  84. Wang TG, Pei Z, Zhang W, Liu B, Langenbach R, Lee C, Wilson B, Reece JM, Miller DS, Hong JS (2005) MPP+- induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J 19:134–1136

    CAS  Google Scholar 

  85. Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JCH, Portman A, Leenders KL (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115:1001–1009

    CAS  PubMed  Google Scholar 

  86. Bauer B, Anika MSH, Pekcec A, Toellner K, Miller DSPH (2008) Seizure-induced up-regulation of P glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73:1444–1453

    CAS  PubMed  Google Scholar 

  87. De Vries EFJ, Doorduin J, Vellinga NAR, Waarde AV (2008) Can celecoxib affect Pglycoprotein-mediated drug efflux? A microPET study. Nucl Med Biol 35:459–466

    PubMed  Google Scholar 

  88. Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Rev 48:251–256

    CAS  PubMed  Google Scholar 

  89. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24:257–268

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Colville-Nash PR, Gilroy DW (2001) Potential adverse effects of cyclooxygenase-2 inhibition: evidence from animal models of inflammation. Bio Drugs 15:1–9

    CAS  Google Scholar 

  91. Aid S, Langenbach R, Bosetti F (2008) Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. J Neuroinflammation 5:17

    PubMed  PubMed Central  Google Scholar 

  92. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967

    CAS  PubMed  Google Scholar 

  93. Wahner AD, Bronstein JM, Bordelon YM, Ritz B (2007) Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology 69:1836–1842

    CAS  PubMed  Google Scholar 

  94. Bower JH, Maraganore DM, Peterson BJ, Ahlskog JE, Rocca WA (2006) Immunologic diseases, anti-inflammatory drugs, and Parkinson disease: a case-control study. Neurology 67:494–496

    CAS  PubMed  Google Scholar 

  95. Ton TG, Heckbert SR, Longstreth WT Jr, Rossing MA, Kukull WA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord 21:964–969

    PubMed  Google Scholar 

  96. Etminan M, Carleton BC, Samii A (2008) Non-steroidal anti-inflammatory drug use and the risk of Parkinson disease: a retrospective cohort study. J Clin Neurosci 15:576–577

    CAS  PubMed  Google Scholar 

  97. Minutoli L, Marini H, Rinaldi M, Bitto A, Irrera N, Pizzino G, Pallio G, Calò M, Adamo EB, Trichilo V, Interdonato M, Galfo F, Squadrito F, Altavilla D (2015) A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury. Neuromolecular Med 17(2):192–201

    CAS  PubMed  Google Scholar 

  98. Bitto A, Giuliani D, Pallio G, Irrera N, Vandini E, Canalini F, Zaffe D, Ottani A, Minutoli L, Rinaldi M, Guarini S, Squadrito F, Altavilla D (2017) Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice. Inflamm Res 66(5):389–398

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chitkara College of Pharmacy, Chitkara University, Punjab, India for providing basic facilities for completion of the article.

Funding

Authors did not receive any funding for this completing this review article.

Author information

Authors and Affiliations

Authors

Contributions

AK: Conceived the idea and wrote the first Draft, TB: Improved the article, SJ: Review of Literature, IK: Writing and improvement of article, AS: Proof Read, PK: Proof Read and improvement of article.

Corresponding author

Correspondence to Arun Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Behl, T., Jamwal, S. et al. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder. Mol Biol Rep 47, 9895–9912 (2020). https://doi.org/10.1007/s11033-020-06033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06033-x

Keywords

Navigation