Skip to main content
Log in

Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 μM, 10 μM, 20 μM, and 50 μM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. World Health Organization (2016) Global report on diabetes. WHO, Geneva

  2. The Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed Central  Google Scholar 

  3. Letchuman GR, Wan Nazaimoon WM, Wan Mohamad WB et al (2010) Prevalence of diabetes in the Malaysian National Health Morbidity Survey III 2006. Med J Malaysia 65:173–179

    Google Scholar 

  4. Piťhová P, Štechová K, Piťha J et al (2016) Determinants of preclinical atherosclerosis are different in type 1 and type 2 diabetic women. Physiol Res 65:219–228. https://doi.org/10.33549/physiolres.933019

    Article  PubMed  Google Scholar 

  5. Carvalho E, Kotani K, Peroni OD, Kahn BB (2005) Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab 289:551–561. https://doi.org/10.1152/ajpendo.00116.2005

    Article  CAS  Google Scholar 

  6. Schlößer HA, Drebber U, Urbanski A et al (2017) Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer 20:83–91. https://doi.org/10.1007/s10120-015-0577-x

    Article  CAS  PubMed  Google Scholar 

  7. Poupel L, Combadière C (2010) Athérosclérose: sur la piste des chimiokines. Biol Aujourdhui 204:285–293. https://doi.org/10.1051/jbio/2010026

    Article  CAS  PubMed  Google Scholar 

  8. Liang CP, Han S, Senokuchi T, Tall AR (2007) The macrophage at the crossroads of insulin resistance and atherosclerosis. Circ Res 100:1546–1555. https://doi.org/10.1161/CIRCRESAHA.107.152165

    Article  CAS  PubMed  Google Scholar 

  9. Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473. https://doi.org/10.1161/01.RES.0000258450.44413.96

    Article  CAS  PubMed  Google Scholar 

  10. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hao J, Shen W, Yu G et al (2010) Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J Nutr Biochem 21:634–644. https://doi.org/10.1016/j.jnutbio.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  12. Lira VA, Benton CR, Yan Z, Bonen A (2010) PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 299. https://doi.org/10.1152/ajpendo.00755.2009

  13. Picca A, Lezza AMS (2015) Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions. Useful insights from aging and calorie restriction studies. Mitochondrion 25:67–75. https://doi.org/10.1016/j.mito.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  14. Dayrit FM (2015) The properties of lauric acid and their significance in coconut oil. J Am Oil Chem Soc 92:1–15. https://doi.org/10.1007/s11746-014-2562-7

    Article  CAS  Google Scholar 

  15. Lieberman S, Enig MG, Preuss HG (2006) A review of monolaurin and lauric acid: natural virucidal and bactericidal agents. Altern Complement Ther 12:310–314. https://doi.org/10.1089/act.2006.12.310

    Article  Google Scholar 

  16. Alves NFB, de Queiroz TM, de Almeida TR et al (2017) Acute treatment with lauric acid reduces blood pressure and oxidative stress in spontaneously hypertensive rats. Basic Clin Pharmacol Toxicol 120:348–353. https://doi.org/10.1111/bcpt.12700

    Article  CAS  PubMed  Google Scholar 

  17. Huang WC, Tsai TH, Te Chuang L et al (2014) Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci 73:232–240. https://doi.org/10.1016/j.jdermsci.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  18. Bobiński R, Wyszomirski M, Machnickam A et al (2019) The effect of lauric acid on pathogens colonizing the burn wound: a pilot study. Altern Ther Health Med

  19. Ong MHL, Wong HK, Tengku-Muhammad TS et al (2019) Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol Biol Rep 46:2631–2641. https://doi.org/10.1007/s11033-019-04661-6

    Article  CAS  PubMed  Google Scholar 

  20. Daigneault M, Preston JA, Marriott HM et al (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5. https://doi.org/10.1371/journal.pone.0008668

  21. Rui L, Aguirre V, Kim JK et al (2001) Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189. https://doi.org/10.1172/JCI10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aranda PS, Lajoie DM, Jorcyk CL (2012) Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33:366–369. https://doi.org/10.1002/elps.201100335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anghebem-Oliveira MI, Martins BR, Alberton D et al (2017) Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch Endocrinol Metab 61:238–248. https://doi.org/10.1590/2359-3997000000258

    Article  PubMed  Google Scholar 

  24. Miranda D, Jara C, Ibañez J et al (2016) PGC-1α-dependent mitochondrial adaptation is necessary to sustain IL-2-induced activities in human NK cells. Mediators Inflamm 2016. https://doi.org/10.1155/2016/9605253

  25. Zhu Y, Chen G, Chen L et al (2014) Monitoring mitophagy in mammalian cells. In: Methods in enzymology, 1st edn. Elsevier Inc., pp 39–55

  26. Fang P, Yu M, Zhang L et al (2017) Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 448:77–86. https://doi.org/10.1016/j.mce.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  27. Arnold SE, Arvanitakis Z, Macauley-Rambach SL et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14:168–181. https://doi.org/10.1038/nrneurol.2017.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han T, Lv Y, Wang S et al (2019) PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharmacol Sci 139:1–8. https://doi.org/10.1016/j.jphs.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  29. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH et al (2007) Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–1120. https://doi.org/10.1038/nature05894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rial SA, Ravaut G, Malaret TB et al (2018) Hexanoic, octanoic and decanoic acids promote basal and insulin-induced phosphorylation of the Akt-MTOR axis and a balanced lipid metabolism in the HEPG2 hepatoma cell line. Molecules 23:1–16. https://doi.org/10.3390/molecules23092315

    Article  CAS  Google Scholar 

  31. Evans AMSNHRM (2013) PPAR gamma, the good, the bad & the future. Nat Med 19. https://doi.org/10.1038/nm.3159.PPAR

  32. Liberato MV, Nascimento AS, Ayers SD et al (2012) Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and Pan-PPAR partial agonists. PLoS One 7:1–10. https://doi.org/10.1371/journal.pone.0036297

    Article  CAS  Google Scholar 

  33. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115. https://doi.org/10.1016/j.freeradbiomed.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Tabas I (2014) Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association? J Atheroscler Thromb 21:381–390. https://doi.org/10.5551/jat.23929

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tuominen A, Miller YI, Hansen LF et al (2006) A natural antibody to oxidized cardiolipin binds to oxidized low-density lipoprotein, apoptotic cells, and atherosclerotic lesions. Arterioscler Thromb Vasc Biol 26:2096–2102. https://doi.org/10.1161/01.ATV.0000233333.07991.4a

    Article  CAS  PubMed  Google Scholar 

  36. Szendroedi J, Phielix E, Roden M (2012) The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 8:92–103. https://doi.org/10.1038/nrendo.2011.138

    Article  CAS  Google Scholar 

  37. Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4. https://doi.org/10.1530/EC-14-0092

  38. Jing L, He MT, Chang Y et al (2015) Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. Int J Biol Sci 11:59–66. https://doi.org/10.7150/ijbs.10174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang WJ, Wang CJ, He Y et al (2018) Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 39:59–73. https://doi.org/10.1038/aps.2017.50

    Article  CAS  PubMed  Google Scholar 

  40. Urbanová M, Mráz M, Ďurovcová V et al (2017) The effect of very-low-calorie diet on mitochondrial dysfunction in subcutaneous adipose tissue and peripheral monocytes of obese subjects with type 2 diabetes mellitus. Physiol Res 66:811–822. https://doi.org/10.33549/physiolres.933469

    Article  PubMed  Google Scholar 

  41. Wilson DF (2017) Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J Physiol 595:7023–7038. https://doi.org/10.1113/JP273839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rabøl R, Højberg PMV, Almdal T et al (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378. https://doi.org/10.1210/jc.2008-1475

    Article  CAS  PubMed  Google Scholar 

  43. Sergi D, Naumovski N, Heilbronn LK et al (2019) Mitochondrial (dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol 10. https://doi.org/10.3389/fphys.2019.00532

  44. Mitra R, Nogee DP, Zechner JF et al (2012) The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 52:701–710. https://doi.org/10.1016/j.yjmcc.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  45. Vernochet C, Damilano F, Mourier A et al (2014) Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J 28:4408–4419. https://doi.org/10.1096/fj.14-253971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kochikuzhyil BM, Devi K, Fattepur SR (2010) Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian J Pharmacol 42:142–145. https://doi.org/10.4103/0253-7613.66835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sellin J, Wingen C, Gosejacob D et al (2018) Dietary rescue of lipotoxicity-induced mitochondrial damage in Peroxin19 mutants. PLoS Biol 16:1–24. https://doi.org/10.1371/journal.pbio.2004893

    Article  CAS  Google Scholar 

  48. Montgomery MK, Osborne B, Brown SHJ et al (2013) Contrasting metabolic effects of medium-versus long-chain fatty acids in skeletal muscle. J Lipid Res 54:3322–3333. https://doi.org/10.1194/jlr.M040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee JH, Zhang Y, Zhao Z et al (2017) Intracellular ATP in balance of pro- and anti-inflammatory cytokines in adipose tissue with and without tissue expansion. Int J Obes 41:645–651. https://doi.org/10.1038/ijo.2017.3

    Article  CAS  Google Scholar 

  50. Miyagawa Y, Mori T, Goto K et al (2018) Intake of medium-chain fatty acids induces myocardial oxidative stress and atrophy. Lipids Health Dis 17:1–7. https://doi.org/10.1186/s12944-018-0908-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Malaysia’s Ministry of Higher Education’s Fundamental Research Grant Scheme (FRGS) (FRGS/1/2016/SKK06/UTAR/02/1).

Funding

This work was supported by Malaysia’s Ministry of Higher Education’s Fundamental Research Grant Scheme (FRGS) (FRGS/1/2016/SKK06/UTAR/02/1).

Author information

Authors and Affiliations

Authors

Contributions

YY Tham carried out the experiment and data analyses/interpretation, and wrote the manuscript. CH Chew was the principal investigator and contributed to the study design as well as interpretation of the findings. QC Choo and TM Tengku Muhammad were the co-investigators of the grants.

Corresponding author

Correspondence to Choy Hoong Chew.

Ethics declarations

Conflict of interest

Authors have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tham, Y.Y., Choo, Q.C., Muhammad, T.S.T. et al. Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages. Mol Biol Rep 47, 9595–9607 (2020). https://doi.org/10.1007/s11033-020-06019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06019-9

Keywords

Navigation