Skip to main content
Log in

Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Analysis of the reactive oxygen species (ROS)-detoxifying biomarkers may elucidate the mitochondrial dysfunction in glaucoma pathogenesis. Therefore, we purposed to investigate the effects of ROS-detoxifying molecules including Silent Information Regulator T1 (SIRT1) and Forkhead Box O 1 (FOXO1) and 3a (FOXO3a) transcription factors in patients with glaucoma. Our analyses included 20 eyes from patients with primary open-angle glaucoma (POAG) and 20 eyes from patients with pseudoexfoliation glaucoma (PXG) who were scheduled for trabeculectomy. After extraction of total RNA from trabecular meshwork tissue, we compared the levels of SIRT1, FOXO1and FOXO3a genes in the oxidative pathway with the level of glyceraldehyde-3 phosphate dehydrogenase (GAPDH), the reference gene, using real-time polymerase chain reaction. Relative gene expression was calculated using the threshold cycle (2−ΔΔCT) method. We observed similarly reduced expression levels of SIRT1, FOXO1, and FOXO3a genes versus GAPDH among patient groups (p = 0.40; p = 0.56; p = 0.35, respectively). This is the first study to identify the role of SIRT1 and FOXOs in human TM with glaucoma. Relative expression levels of SIRT1, FOXO1, and FOXO3a genes versus a control gene (GAPDH) were decreased in POAG and PXG groups. Our results show that SIRT1and FOXOs (1-3a) deserve special attention in the pathogenesis of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee D, Shim MS, Kim KY, Noh YH, Kim H, Kim SY et al (2014) Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 55(2):993–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu AL, Fuchshofer R, Kampik A, Welge-Lüssen U (2008) Effects of oxidative stress in trabecular meshwork cells are reduced by prostaglandin analogues. Invest Ophthalmol Vis Sci 49(11):4872–4880

    PubMed  Google Scholar 

  3. Schlötzer-Schrehardt U (2009) Molecular pathology of pseudoexfoliation syndrome/glaucoma–new insights from LOXL1 gene associations. Exp Eye Res 88:776–785

    PubMed  Google Scholar 

  4. Yanagi M, Kawasaki R, Wang JJ, Wong TY, Crowston J, Kiuchi Y (2011) Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol 39(3):252–258

    PubMed  Google Scholar 

  5. Zenkel M, Lewczuk P, Jünemann A, Kruse FE, Naumann GO, Schlötzer-Schrehardt U (2010) Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol 176(6):2868–2879

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F (2016) Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS ONE 11(12):e0166915

    PubMed  PubMed Central  Google Scholar 

  7. He Y, Ge J, Tombran-Tink J (2008) Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci 49:4912–4922

    PubMed  Google Scholar 

  8. Yang XJ, Ge J, Zhuo YH (2013) Role of mitochondria in the pathogenesis and treatment of glaucoma. Chin Med J 126(22):4358–4365

    CAS  PubMed  Google Scholar 

  9. Chrysostomou V, Trounce IA, Crowston JG (2010) Mechanisms of retinal ganglion cell injury in aging and glaucoma. Ophthalmic Res 44:173–178

    PubMed  Google Scholar 

  10. Osborne NN (2008) Pathogenesis of ganglion ‘“cell death”’ in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog Brain Res . https://doi.org/10.1016/S0079-6123(08)01124-2

    Article  PubMed  Google Scholar 

  11. Newman NJ (2002) From genotype to phenotype in Leber hereditary optic neuropathy: still more questions than answers. J Neuroophthalmol 22:257–261

    PubMed  Google Scholar 

  12. Abu-Amero KK, Morales J, Bosley TM (2006) Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 47:2533–2541

    PubMed  Google Scholar 

  13. Izzotti A, Longobardi M, Cartiglia C, Sacca SC (2011) Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS ONE 6:e14567

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sundaresan P, Simpson DA, Sambare C, Duffy S, Lechner J, Dastane A, Dervan EW, Vallabh N, Chelerkar V, Deshpande M, O’Brien C, McKnight AJ, Willoughby CE (2015) Whole mitochondrial genome sequencing in primary open-angle glaucoma using massively paralel sequencing identifies novel and known pathogenic variants. Genet Med 17(4):279–284

    CAS  PubMed  Google Scholar 

  15. Lascaratos G, Chau KY, Zhu H, Gkotsi D, King R, Gout I, Kamal D, Luthert PJ, Schapira AH, Garway-Heath DF (2015) Resistance to the most common optic neuropathy is associated with systemic mitochondrial efficiency. Neurobiol Dis 82:78–85

    CAS  PubMed  Google Scholar 

  16. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, Zamzami N, Jan G, Kroemer G, Brenner C (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26(18):2606–2620

    CAS  PubMed  Google Scholar 

  17. Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol 90:237–241

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren PL, Fan XJ, Yang XL, Liu MJ, Liu J, Huang JJ (2014) SIRT1 promote GTM cell DSBs repair and resist cellular senescence. Sichuan Da Xue Xue Bao Yi Xue Ban 45(4):572–577

    CAS  PubMed  Google Scholar 

  19. Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM et al (2013) The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retinal Eye Res 37:31–67

    CAS  Google Scholar 

  20. Mimura T, Kaji Y, Noma H, Funatsu H, Okamoto S (2013) The role of SIRT 1 in ocular aging. Exp Eye Res 116:17–26

    CAS  PubMed  Google Scholar 

  21. Zhou M, Luo J, Zhang H (2018) Role of sirtuin 1 in the pathogenesis of ocular disease. Int J Mol Med 42:13–20

    CAS  PubMed  Google Scholar 

  22. Kenneth M (2017) Forkhead transcription factors: formulating a FOXO target for cognitive loss. Curr Neurovasc Res 14(4):415–420

    Google Scholar 

  23. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT 1 deacetylase. Science 303(5666):2011–2015

    CAS  PubMed  Google Scholar 

  24. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT 1 deacetylase. EMBO J 23(12):2369–2380

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286(9):7468–7478

    CAS  PubMed  Google Scholar 

  26. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534

    CAS  PubMed  Google Scholar 

  27. Katayama K, Nakamura A, Sugimoto Y, Tsuruo T, Fujita N (2008) FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene 27:1677–1686

    CAS  PubMed  Google Scholar 

  28. Kousteni S (2012) FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50:437–443

    CAS  PubMed  Google Scholar 

  29. Ponugoti B, Dong G, Graves DT (2012) Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res. 31:939751. https://doi.org/10.1155/2012/939751

    Article  CAS  Google Scholar 

  30. Haeusler RA, Kaestner KH, Accili D (2010) FoxOs function synergistically to promote glucose production. J Biol Chem 285:35245–35248

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Salih DAM, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS ONE 8(9):e73875

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Modur V, Nagarajan R, Evers BM, Milbrandt J (2002) FOXO proteins regulate tumor necrosis factor- related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277:47928–47937

    CAS  PubMed  Google Scholar 

  34. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  35. Kenneth JL, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Google Scholar 

  36. McElnea EM, Quill B, Docherty NG, Irnaten M, Siah WF, Clark AF et al (2011) Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol Vis 17:1182–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18(2):93–100

    PubMed  Google Scholar 

  38. Kamel K, Farrell M, O’Brien C, Mitochondrial dysfunction in ocular disease (2017) Focus on glaucoma. Mitochondrion 35:44–53. https://doi.org/10.1016/j.mito.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Ju WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N et al (2007) Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 48:2145–2151

    PubMed  Google Scholar 

  40. Coughlin L, Morrison RS, Horner PJ, Inman DM (2015) Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Invest Ophthalmol Vis Sci 56:1437–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Izzotti A, Longobardi M, Cartiglia C, Saccà SC (2010) Proteome alterations in primary open angle glaucoma aqueous humor. J Proteome Res 9(9):4831–4838

    CAS  PubMed  Google Scholar 

  42. Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123:458–463

    CAS  PubMed  Google Scholar 

  43. Pulliero A, Seydel A, Camoirano A, Saccà SC, Sandri M, Izzotti A (2014) Oxidative damage and autophagy in the human trabecular meshwork as related with ageing. PLoS ONE 9(6):e98106

    PubMed  PubMed Central  Google Scholar 

  44. Yao H, Sundar IK, Ahmad T, Lerner C, Gerloff J, Friedman AE, Phipps RP, Sime PJ, McBurney MW, Guarente L, Rahman I (2014) Sırt1 protects against cigarette smoke- induced lung oxidative stress via a FOXO3- dependent mechanism. Am J Physiol Lung Cell Mol Physiol 306:L816–L828. https://doi.org/10.1152/ajplung.00323.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182

    PubMed  PubMed Central  Google Scholar 

  46. Han YX, Lin YT, Xu JJ et al (2011) Status epilepticus stimulates peroxisome proliferator-activated receptor γ coactivator 1-α/mitochondrial antioxidant system pathway by a nitric oxide-dependent mechanism. Neuroscience 186:128–134

    CAS  PubMed  Google Scholar 

  47. Wu Z, Boss O (2007) Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets 11:1329–1338

    CAS  PubMed  Google Scholar 

  48. Wang SJ, Zhao XH, Chen W, Bo N, Wang XJ, Chi ZF, Wu W (2015) Sirtuin 1 activation enhances the PGC-1α/mitochondrial antioxidant system pathway in status epilepticus. Mol Med Rep 11:521–526

    CAS  PubMed  Google Scholar 

  49. Canto C, Auwerx J (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105

    CAS  PubMed  PubMed Central  Google Scholar 

  50. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    CAS  PubMed  Google Scholar 

  51. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M (2005) PGC-1αlpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 66:562–573

    CAS  PubMed  Google Scholar 

  52. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423(6939):550–555

    CAS  PubMed  Google Scholar 

  53. Horio Y, Hayashi T, Kuno A, Kunimoto R (2011) Cellular and molecular effects of sirtuins in health and disease. Clin Sci 121:191–203. https://doi.org/10.1042/CS20100587

    Article  CAS  Google Scholar 

  54. Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V et al (2008) FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet 17(4):490–505

    CAS  PubMed  Google Scholar 

  55. Halilovic EA, Ljaljevic S, Alimanovic I, Mavija M, Oros A, Nisic F (2015) Analysis of the influence of type of diabetes mellitus on the development and type of glaucoma. Med Arh 69(1):34–37

    Google Scholar 

  56. Zhao D, Cho J, Kim MH, Friedman D, Guallar E (2014) Diabetes, glucose metabolism, and glaucoma: the 2005–2008 National Health and Nutrition Examination Survey. PLoS ONE 9(11):e112460. https://doi.org/10.1371/journal.pone.0112460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Apreutesei NA, Chiselita D, Motas OI (2014) Glaucoma evolution in patients with diabetes. Rev Med Chir Soc Med Nat Iasi 118(3):667–674

    PubMed  Google Scholar 

  58. Leeman M, Kestelyn P (2019) Glaucoma and blood pressure. Hypertension 73:944–950

    CAS  PubMed  Google Scholar 

  59. Szaflik JP, Rusin P, Zaleska-Zmijewska A, Kowalski M, Majsterek I et al (2010) Reactive oxygen species promote localized DNA damage in glaucoma-iris tissues of elderly patients vulnerable to diabetic injury. Mutat Res 697:19–23. https://doi.org/10.1016/j.mrgentox.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  60. Sato T, Roy S (2002) Effect of high glucose on fibronectin expression and cell proliferation in trabecular meshwork cells. Invest Ophthalmol Vis Sci 43:170–175

    PubMed  Google Scholar 

  61. Chung HJ, Hwang HB, Lee NY (2015) The association between primary open- angle glaucoma and blood pressure: two aspects of hypertension and hypotension. Biomed Res Int 2015:827516

    PubMed  PubMed Central  Google Scholar 

  62. McMonnies C (2018) Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optometry 11:3–9

    Google Scholar 

  63. Tezel G, Luo C, Yang X (2007) Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 48:1201–1211

    PubMed  Google Scholar 

  64. Hao Liu H, Sheng M, Liu Y, Wang P, Chen Y, Chen L, Wang W, Li B (2015) Expression of SIRT1 and oxidative stress in diabetic dry eye. Int J Clin Exp Pathol 8(6):7644–7653

    PubMed  Google Scholar 

  65. Wang Y, Zhao X, Shi D et al (2013) Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci 54(5):3806–3814

    CAS  PubMed  Google Scholar 

  66. Wang S, Wang J, Zhao A, Li J (2017) SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells. Mol Med Rep 16:3331–3338

    CAS  PubMed  Google Scholar 

  67. Raju I, Kannan K, Abraham EC (2013) FoxO3a serves as a biomarker of oxidative stress in human lens epithelial cells under conditions of hyperglycemia. PLoS ONE 8(6):e67126. https://doi.org/10.1371/cemia.journal.pone.0067126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen J, Michan S, Juan AM, Hurst CG, Hatton CJ, Pei DT, Joyal JS, Evans LP, Cui Z, Stahl A et al (2013) Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis 16:985–992

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107:137–148

    CAS  PubMed  Google Scholar 

  70. Vaziri H, Dessain SK, Ng Eaton E, Imai S, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    CAS  PubMed  Google Scholar 

  71. McDougald DS, Dine KE, Zezulin AU, Bennett J, Shindler KS (2018) SIRT1 and NRF2 gene transfer mediate distinct neuroprotective effects upon retinal ganglion cell survival and function in experimental optic neuritis. Invest Ophthalmol Vis Sci 59:1212–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang Y, LiH CY, Zhang M, Wei S (2015) Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep 12:6962–6968

    CAS  PubMed  Google Scholar 

  73. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maiese K, Chong ZZ, Shang YC, Hou J (2009) FoxO proteins: cunning concepts and considerations fort he cardiovascular system. Clin Sci 116(3):191–203

    CAS  Google Scholar 

  75. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FOXO by SIRT 1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pino E, Amamoto R, Zheng L, Cacquevel M, Sarria JC, Knott GW et al (2014) FOXO3 determines the accumulation of α-synuclein and controls the fate of dopaminergic neurons in the substantia nigra. Hum Mol Genet 23(6):1435–1452

    CAS  PubMed  Google Scholar 

  77. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    CAS  PubMed  Google Scholar 

  78. Shinoda S, Schindler CK, Meller R, So NK, Araki T, Yamamoto A, Lan JQ, Taki W, Simon RP, Henshall DC (2004) Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 113:1059–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shang YC, Chong ZZ, Hou J, Maiese K (2010) Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 22(9):1317–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al (2004) Mammalian SIRT 1 represses forkhead transcription factors. Cell 116:551–563

    CAS  PubMed  Google Scholar 

  81. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL, Rahman I (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 122(6):2032–2045. https://doi.org/10.1172/JCI60132./

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hwang JW et al (2011) FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J Immunol 187(2):987–998

    CAS  PubMed  Google Scholar 

  83. Liiv I, Haljasorg U, Kisand K, Maslovskaja J, Laan M, Peterson P (2012) AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH. Biochem Biophys Res Commun 423:32–37

    CAS  PubMed  Google Scholar 

  84. Kusner LL, Sarthy VP, Mohr S (2004) Nuclear translocation of glyceraldehyde- 3-phosphate dehydrogenase: a role in high glucose–induced apoptosis in retinal Muller cells. Invest Ophthalmol Vis Sci 45:1553–1561

    PubMed  Google Scholar 

  85. Yego EC, Vincent JA, Sarthy V, Busik JV, Mohr S (2009) Differential regulation of high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation in Müller cells by IL-1beta and IL-6. Invest Ophthalmol Vis Sci 50(4):1920–1928

    PubMed  Google Scholar 

  86. Sirover MA (2012) Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem 113:2193–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, Ha HC, Li XJ, Snyder SH, Sawa A (2006) Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Acad Sci 103:3405–3409

    CAS  Google Scholar 

  88. Berry MD (2004) Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J Cancer Neurosci 29:337–345

    Google Scholar 

  89. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43

    CAS  PubMed  Google Scholar 

  90. Jacquin MA, Chiche J, Zunino B, Bénéteau M, Meynet O, Pradelli LA, Marchetti S, Cornille A, Carles M, Ricci JE (2013) GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ 20:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Azam S, Jouvet N, Jilani A, Vongsamphanh R, Yang X, Yang S, Ramotar D (2008) Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Boil Chem 283:30632–30641

    CAS  Google Scholar 

  92. Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta Mol Cell Res 1810:741–751

    CAS  Google Scholar 

  93. Joo HY, Woo SR, Shen YN, Yun MY, Shin HJ, Park ER, Kim SH, Park JE, Ju YJ, Hong SH, Hwang SG, Cho MH, Kim J, Lee KH (2012) SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: implications for cell survival after irradiation. Biochem Biophys Res Commun 424:681–686

    CAS  PubMed  Google Scholar 

  94. Butera G, Mullappilly N, Masetto F, Palmieri M, Scupoli MT, Pacchiana R, Donadelli M (2019) Regulation of autophagy by nuclear GAPDH and ıts aggregates in cancer and neurodegenerative disorders. Int J Mol Sci 20:2062. https://doi.org/10.3390/ijms20092062

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Assoc. Prof. Yunus Kasım Terzi for assistance of the analysis and critical reading of the manuscript, Aslı Belen Sağlam for assistance in the preparation of the analysis, and Gozde Ozer for statistical analysis of the study.

Funding

No funding is available for this study.

Author information

Authors and Affiliations

Authors

Contributions

DY, TT, NY, Fİ Şahin: Study design, writing manuscript. DY, TT: Collecting data, stastistical analysis. SAD, FİŞ: Genetic analyses of the samples.

Corresponding author

Correspondence to Derya Yaman.

Ethics declarations

Conflict of interest

No author has a financial or proprietary interest in any part of the study.

Ethical approval

The ethic Committee: Yildirim Beyazit University, Ethics Committee of Clinical Research. The ethic approval number: 26379996/23. The ethic approval date: 21.02.2018. The guarantor: DY.

Informed consent

All patients signed an informed consent form before study participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, D., Takmaz, T., Yüksel, N. et al. Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 47, 9337–9344 (2020). https://doi.org/10.1007/s11033-020-05994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05994-3

Keywords

Navigation