Skip to main content

Advertisement

Log in

The complete plastome of Sorbaria kirilowii: genome structure, comparative analysis, and phylogenetic implications

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sorbaria kirilowii is a deciduous perennial admired for its showy white blossoms. Though of importance for horticultural purposes, the plastomic study concerning this species is still lacking. Here, the plastome of S. kirilowii was de novo assembled using the high-throughput sequencing data. The complete plastome assembly of S. kirilowii was 160,810 bp in length, with a GC content of 36.03%. It featured a typical quadripartite structure, containing a pair of inverted repeats (IRs; 26,338 bp) separated by a large single-copy (LSC; 88,762 bp) and a small single-copy (SSC, 19,372 bp). In total, 132 genes were annotated in the plastome, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Furthermore, 63 SSRs, most of which were AT-rich, were identified in the cp genome of S. kirilowii. 71.7% of the cpSSRs were shown to be located in the intergenic regions. In addition, 49 repeats of varying sizes and types were also identified in the plastome. Through comparison, eight divergence hotspots were identified between the plastome of S. kirilowii and S. sorbifolia var. stellipila. These variable regions could potentially be developed into molecular markers for species delimitation or phylogenetics in future studies. We re-investigated the relationship among 17 Rosaceae species using the plastomic sequences, and S. kirilowii was shown to be a sister to S. sorbifolia var. stellipila. Overall, this study provides plastomic resources which could facilitate marker development and phylogenomics of Rosaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data that support the findings of this research have been deposited in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb under the accession number of CNP0001053.

References

  1. Ling-ti L (1996) The evolution and distribution of subfam. Spiraeoideae (Rosaceae) of China, with special reference to distribution of the subfamily in the world. J Syst Evol 34(4):361–375

    Google Scholar 

  2. Qu G-W, Wu C-J, Gong S-Z, Xie Z-P, Lv C-J (2016) Leucine-derived cyanoglucosides from the aerial parts of Sorbaria sorbifolia (L.) A. Braun Fitoterapia 111:102–108. https://doi.org/10.1016/j.fitote.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  3. Jang J, Lee JS, Jang Y-J, Choung ES, Li WY, Lee SW, Kim E, Kim J-H, Cho JY (2020) Sorbaria kirilowii ethanol extract exerts anti-inflammatory effects in vitro and in vivo by targeting Src/nuclear factor (NF)-κB. Biomolecules 10(5):741

    Article  CAS  PubMed Central  Google Scholar 

  4. Jensen P, Leister D (2014) Chloroplast evolution, structure and functions. F1000prime Rep 6:40. https://doi.org/10.12703/P6-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roston RL, Jouhet J, Yu F, Gao H (2018) Editorial: structure and function of chloroplasts. Front Plant Sci 9:1656–1656. https://doi.org/10.3389/fpls.2018.01656

    Article  PubMed  PubMed Central  Google Scholar 

  6. Palmer J (1990) Plastid chromosomes: structure and evolution. In: Constabel F (ed) Cell culture and somatic cell genetics of plants Vol 7A, the molecular biology of plastids. Elsevier, Amsterdam

    Google Scholar 

  7. Dobrogojski J, Adamiec M, Luciński R (2020) The chloroplast genome: a review. Acta Physiologiae Plant 42(6):98. https://doi.org/10.1007/s11738-020-03089-x

    Article  CAS  Google Scholar 

  8. Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134. https://doi.org/10.1186/s13059-016-1004-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raubeson L, Jansen R (2005) Chloroplast genomes of plants, plant diversity and evolution: genotypic and phenotypic variation in higher plants. Divers Evol Plants. https://doi.org/10.1079/9780851999043.0045

    Article  Google Scholar 

  10. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129–e129. https://doi.org/10.1093/nar/gkt371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18–e18. https://doi.org/10.1093/nar/gkw955

    Article  CAS  PubMed Central  Google Scholar 

  12. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11):e112963. https://doi.org/10.1371/journal.pone.0112963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(W1):W65–W73. https://doi.org/10.1093/nar/gkz345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones E, Fischer A, Bock R, Greiner S (2017) GeSeq - Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx391

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64. https://doi.org/10.1093/nar/gkz238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–1047. https://doi.org/10.1093/bioinformatics/16.11.1046

    Article  CAS  PubMed  Google Scholar 

  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34(12):3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  19. Xia X (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 35(6):1550–1552. https://doi.org/10.1093/molbev/msy073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wellington Santos M (2009) WebSat–a web software for microsatellite marker development. Bioinformation 6(3):282

    Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Degtjareva GV, Logacheva MD, Samigullin TH, Terentieva EI, Valiejo-Roman CM (2012) Organization of chloroplast psbA-trnH intergenic spacer in dicotyledonous angiosperms of the family Umbelliferae. Biochem Biokhimiia 77(9):1056–1064. https://doi.org/10.1134/s0006297912090131

    Article  CAS  Google Scholar 

  24. Schroeder H, Hoeltken AM, Fladung M (2012) Differentiation of populus species using chloroplast single nucleotide polymorphism (SNP) markers–essential for comprehensible and reliable poplar breeding. Plant Biol 14(2):374

    Article  CAS  PubMed  Google Scholar 

  25. Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiol 171(4):2294. https://doi.org/10.1104/pp.16.00523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He X, Zhang J (2005) Gene complexity and gene duplicability. Curr Biol 15(11):1016–1021. https://doi.org/10.1016/j.cub.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  27. Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Xue Y, Jin XF, Tian YS, Zhao W, Yao QH (2009) Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv 27(4):340–347. https://doi.org/10.1016/j.biotechadv.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  28. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31(5):419–429. https://doi.org/10.1007/s002940050225

    Article  CAS  PubMed  Google Scholar 

  29. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23(2):279–291. https://doi.org/10.1093/molbev/msj029

    Article  CAS  PubMed  Google Scholar 

  30. Huang J, Yang X, Zhang C, Yin X, Liu S, Li X (2015) Development of chloroplast microsatellite markers and analysis of chloroplast diversity in Chinese Jujube (Ziziphus jujuba Mill.) and Wild Jujube (Ziziphus acidojujuba Mill.). PLoS ONE 10(9):e0134519–e0134519. https://doi.org/10.1371/journal.pone.0134519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garaycochea S, Speranza P, Alvarez-Valin F (2015) A strategy to recover a high-quality, complete plastid sequence from low-coverage whole-genome sequencing. Appl Plant Sci. https://doi.org/10.3732/apps.1500022

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li B, Huang P, Guo W, Zheng Y (2020) Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol Res. https://doi.org/10.1186/s40659-020-00289-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, Zhang W, Kim K, Lee SC, Yang TJ, Wang Y (2016) The complete chloroplast genome sequences of five epimedium species: lights into phylogenetic and taxonomic analyses. Front Plant Sci 7:306. https://doi.org/10.3389/fpls.2016.00306

    Article  PubMed  PubMed Central  Google Scholar 

  34. Potter D, Eriksson T, Evans R, Oh S-H, Smedmark J, Morgan D, Kerr M, Robertson K, Mp A, Dickinson T, Campbell C (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43. https://doi.org/10.1007/s00606-007-0539-9

    Article  Google Scholar 

  35. Yu S-X, Gadagkar SR, Potter D, Xu D-X, Zhang M, Li Z-Y (2018) Phylogeny of Spiraea (Rosaceae) based on plastid and nuclear molecular data: Implications for morphological character evolution and systematics. Perspect Plant Ecol Evol Syst 34:109–119. https://doi.org/10.1016/j.ppees.2018.08.003

    Article  Google Scholar 

  36. Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266(1):5–43. https://doi.org/10.1007/s00606-007-0539-9

    Article  Google Scholar 

  37. Song J-H, Hong S-P (2020) Fruit and seed micromorphology and its systematic significance in tribe Sorbarieae (Rosaceae). Plant Syst Evol 306(1):6. https://doi.org/10.1007/s00606-020-01640-4

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Science and Technology Project of Qinghai Province (2019-ZJ-962Q; 2019-NK-106; 2018-ZJ-963Q; 2017-NK-151; 2016-ZJ-Y01), The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (2019-ZZ-05), and The Youth Foundation of Qinghai University (2019-QNY-2).

Author information

Authors and Affiliations

Authors

Contributions

LW designed and supervised the project, reviewed drafts of the paper; LW and JL conceived the conception, analyzed the data and wrote the original draft manuscript; LW and QS. analyzed the data and checked and revised the manuscript; JL and WS participated in analyzing the data and drew some figures and tables; LW collected the samples and provided some advice.

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(JPG 480 kb). Fig. S1 Verification of the assembly of S. kirilowii plastome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liang, J., Shang, Q. et al. The complete plastome of Sorbaria kirilowii: genome structure, comparative analysis, and phylogenetic implications. Mol Biol Rep 47, 9677–9687 (2020). https://doi.org/10.1007/s11033-020-05976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05976-5

Keywords

Navigation