Skip to main content
Log in

Morphotype divergence and genetic diversity of Hedeoma piperita Benth. in western Mexico

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hedeoma piperita Benth. is a perennial herb from the Lamiaceae family, which is highly valued for its medicinal and culinary properties by the Purépecha ethnic group in Michoacán, Mexico. The species presents populations of two morphotypes (white and purple corollas) that have not been formally studied. In this work, we aimed to evaluate the morphological and genetic variation between the two morphotypes. We sampled individuals from 15 populations within the Purépecha Plateau in western Mexico to measure 33 quantitative and qualitative morphological variable characters (vegetative and reproductive) and to estimate genetic diversity and structure using six nuclear microsatellite markers. Principal Component Analysis showed a clear separation between populations of the two morphotypes, which differences were statistically significant for all vegetative (n = 11) and reproductive (n = 22) characters. Similarly, Bayesian and multivariate cluster analyses based on the microsatellite data supported the distinction of the two morphotypes, except for one population of the white corolla that was genetically closer to the purple corolla group. Genetic diversity was moderate to low across populations of the two morphotypes, and inbreeding (FIS) was significantly higher in populations of the purple corolla. Our morphological and genetic data support the presence of two divergent morphotypes in H. piperita. This species is of high importance within the Purépecha culture, but unfortunately is declining in the region due to its high extraction rates. Thus, our results are valuable to delineate germplasm zones for future breeding programs and for informing in situ conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author.

References

  1. Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer R, Harley MM, De Kok RD, Krestovskaja TD, Morales R, Paton AJ (2004) Labiatae, In: Flowering plants·dicotyledons, Springer, Berlin, pp 167–275

  2. Khoury M, Stien D, Eparvier V, Ouaini N, El Beyrouthy M (2016) Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid Based Complement Alternat Med. https://doi.org/10.1155/2016/2547169

    Article  PubMed  PubMed Central  Google Scholar 

  3. Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A et al (2018) Medicinal plants of the family Lamiaceae in pain therapy: a review. Pain Res Manag. https://doi.org/10.1155/2018/7801543

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aburjai T, Natsheh FM (2003) Plants used in cosmetics. Phytother Res 17:987–1000. https://doi.org/10.1002/ptr.1363

    Article  PubMed  Google Scholar 

  5. Carović-Stanko K, Marko P, Grdiša M, Jasna P, Dalibor B, Mirjana HĆ, Zlatko Š (2016) Medicinal plants of the family Lamiaceaeas functional foods: a review. Czech J Food Sci 34:377–390. https://doi.org/10.17221/504/2015-CJFS

    Article  Google Scholar 

  6. Zamudio S, Bedolla-García BY (2013) Descubrimiento de Salvia buchananii (Lamiaceae) en estado silvestre en Querétaro México. Rev Mex Biodiv 84:530–535

    Article  Google Scholar 

  7. Martínez-Gordillo M, Bedolla-García B, Cornejo-Tenorio G, Fragoso-Martínez I, García-Peña M, González-Gallegos R, Lara-Cabrera JG, Zamudio SI (2017) Lamiaceae de México. Bot Sci 95:780–806. https://doi.org/10.17129/botsci.1871

    Article  Google Scholar 

  8. Cahill JP (2003) Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ Bot 57:604–618. https://doi.org/10.1663/0013-0001(2003)057[0604:EOCSHL]2.0.CO;2

    Article  Google Scholar 

  9. Viveros-Valdez E, Rivas-Morales C, Oranday-Cárdenas A, Castro-Garza J, Carranza-Rosales P (2010) Antiproliferative effect from the Mexican poleo (Hedeoma drummondii). J Med Food 13:740–742. https://doi.org/10.1089/jmf.2009.0041

    Article  CAS  PubMed  Google Scholar 

  10. Leyva-López N, Nair V, Bang WY, Cisneros-Zevallos L, Heredia JB (2016) Protective role of terpenes and polyphenols from three species of oregano (Lippia graveolens Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264,7 macrophage cells. J Ethnopharmacol 187:302–312. https://doi.org/10.1016/j.jep.2016.04.051

    Article  CAS  PubMed  Google Scholar 

  11. Lara-Cabrera SI, Bedolla-García BY (2016) Diversidad de Lamiaceae en el Estado de Michoacán México. Acta Bot Mex 116:107–149

    Article  Google Scholar 

  12. Bentham G. (1832–1836). Labiatarum genera et species. Ridgeway, London, 783 pp.

  13. Irving RS (1980) The systematics of Hedeoma (Labiatae). Sida 8:218–295

    Google Scholar 

  14. Pascual CMM (2016) Fenología y Propagación en Huerto de la Planta Quiensabe (Hedeoma piperita Benth) en la comunidad de San Francisco Pichátaro Michoacán, Dissertation. Universidad Intercultural Indígena de Michoacán México.

  15. Garibay OC, and Bocco VG (2011) Cambios de uso del suelo en la meseta Purépecha (1976-2005). INE-SEMARNAT CIGA, México, pp 124

  16. Ceja HS (2017) Aspectos ecológicos y germinación in vitro de Hedeoma piperita, Benth, para su aprovechamiento sustentable en Cherán, Michoacán, México. Dissertation. Universidad Intercultural Indígena de Michoacán, México.

  17. SAS Institute Inc (2014) JMP 11 scripting guide, 2nd edn. SAS Institute Inc, Cary

    Google Scholar 

  18. Segarra-Moragues JG, Gleiser G (2009) Isolation and characterisation of di and tri nucleotide microsatellite loci in Rosmarinus officinalis (Lamiaceae) using enriched genomic libraries. Con Genet 10:571–575. https://doi.org/10.1007/s10592-008-9572-7

    Article  CAS  Google Scholar 

  19. Radosavljevi IĆ, Jakse J, Javornik B, Satovic Z, Liber Z (2011) New microsatellite markers for Salvia officinalis (Lamiaceae) and cross-amplification in closely related species. Am J Bot. https://doi.org/10.3732/ajb.1000462

    Article  Google Scholar 

  20. Radosavljević I, Satovic Z, Jakse J et al (2012) Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon Vandas. Int J Mol Sci 13:12082–12093. https://doi.org/10.3390/ijms130912082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karaca M, Ince AG, Aydin A, Ay ST (2013) Cross-genera transferable e-microsatellite markers for 12 genera of the Lamiaceae family. J Sci Food Agr 93:1869–1879. https://doi.org/10.1002/jsfa.5982

    Article  CAS  Google Scholar 

  22. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  23. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  24. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel, population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  Google Scholar 

  25. Kalinowski ST (2005) HP-RARE 10: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Earl DA, Vonholdt BM (2012) Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Res 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  29. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  30. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  31. Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103. https://doi.org/10.1038/hdy.2008.34

    Article  CAS  PubMed  Google Scholar 

  32. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-proje ct.org

  33. Excoffier L, Lischer H (2015) Arlequin 35 an integrated software package for population genetics data analysis swiss institute of bioinformatics. Evol Bioinform Online 1:1–47. https://doi.org/10.1177/117693430500100003

    Article  Google Scholar 

  34. Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  35. Domínguez-Vázquez G, Berlin B, Castro-Ramírez AE, Estrada-Lugo EIJ (2002) Revisión de la diversidad y patrones de distribución de Labiatae en Chiapas. Anales del Instituto de Biología Serie Botánica 73:39–80

    Google Scholar 

  36. Corral-Bribiesca JI (2005) Variación morfológica y molecular de RAPD´s en Salvia polystachya (Lamiaceae). Bachelor Thesis. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Mexico, 68 pp.

  37. Santillán-Ramírez MA, López-Villafranco ME, Aguilar-Rodríguez S, Aguilar-Contreras A (2008) Estudio etnobotánico arquitectura foliar y anatomía vegetativa de Agastache mexicana spp. mexicana y A. mexicana ssp. xolocotziana. Rev Mex Biodivers 79:513–524

    Google Scholar 

  38. Solouki M, Hoseini SB, Siahsar BA, Tavassoli A (2012) Genetic diversity in dill (Anethum graveolens L.) populations on the basis of morphological traits and molecular markers. Afr J Biotechnol 11:3649–3655. https://doi.org/10.5897/AJB11.2169

    Article  CAS  Google Scholar 

  39. Thompson KA, Newmaster SG (2014) Molecular taxonomic tools provide more accurate estimates of species richness at less cost than traditional morphology-based taxonomic practices in a vegetation survey. Biodiv Con 23:1411–1424. https://doi.org/10.1007/s10531-014-0672-z

    Article  Google Scholar 

  40. Heidari EF, Rahimmalek M, Mohammadi S, Ehtemam MH (2016) Genetic structure and diversity of ajowan (Trachyspermum ammi) populations based on molecular morphological markers and volatile oil content. Ind Crops Prod 92:186–196. https://doi.org/10.1016/j.indcrop.2016.08.014

    Article  CAS  Google Scholar 

  41. Rico Y, Gútierrez-Becerill BA (2019) Species delimitation and genetic structure of two endemic Magnolia species (section Magnolia; Magnoliaceae) in Mexico. Genetica 147:57–68

    Article  CAS  PubMed  Google Scholar 

  42. González-Gallegos JG, Castro A, Quintero-Fuentes V, Mendoza-López ME, De Castro-Arce E (2016) Revisión taxonómica de Lamiaceae del occidente de México. Ibugana 7:3–345

    Google Scholar 

  43. Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040. https://doi.org/10.1111/mec.13454

    Article  PubMed  Google Scholar 

  44. Wester P, Claßen-Bockhoff R (2011) Pollination syndromes of New World Salvia species with special reference to bird pollination. Ann Missouri Bot 98:101–155. https://doi.org/10.3417/2007035

    Article  Google Scholar 

  45. Wilson TC, Conn BJ, Henwood MJ (2017) Great expectations: correlations between pollinator assemblages and floral characters in Lamiaceae. Int J Plant Sci 178:170–187. https://doi.org/10.1086/690023

    Article  Google Scholar 

  46. Kramer AT, Fant JB, Ashley MV (2011) Influences of landscape and pollinators on population genetic structure: examples from three Penstemon (Plantaginaceae) species in the Great Basin. Am J Bot 98:109–121. https://doi.org/10.3732/ajb.1000229

    Article  PubMed  Google Scholar 

  47. Whitlock R, Hipperson H, Thompson DBA, Butlin RK, Burke T (2016) Consequences of in-situ strategies for the conservation of plant genetic diversity. Biol Cons 203:134–142

    Article  Google Scholar 

  48. Koohdar F, Sheidai M, Talebi SM, Noormohammadi Z (2015) Population genetic structure in medicinal plant Lallemantia iberica (Lamiaceae). Biodiversitas 16:139–144. https://doi.org/10.13057/biodiv/d160206

    Article  Google Scholar 

  49. Pence VC, Winget GD, Lindsey KM, Plair BL, Charls SM (2009) In vitro propagation cryopreservation and genetic analysis of the endangered Hedeoma todsenii (Lamiaceae). Madroño 56:221–228. https://doi.org/10.3120/0024-9637-56.4.221

    Article  Google Scholar 

  50. Fadhel NB, Boussaïd M (2004) Genetic diversity in wild Tunisian populations of Mentha pulegium L. (Lamiaceae). Genet Resour Crop Evol 51:309–321. https://doi.org/10.1023/B:GRES.0000024016.13743.8b

    Article  Google Scholar 

  51. Yuan QJ, Zhang ZY, Hu J, Guo LP, Shao AJ, Huang LQ (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant Scutellaria baicalensis (Lamiaceae). BMC Genet 11:29. https://doi.org/10.1186/1471-2156-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mimura M, Aitken SN (2007) Increase selfing and decrease effective pollen donor number in peripheral relative to central populations of Picea sitchensis (Pinaceae). Am J Bot 94:991–998. https://doi.org/10.3732/ajb.94.6.991

    Article  PubMed  Google Scholar 

  53. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general and positive relationships between plant population size fitness and genetic variation? J Ecol 94:942–952. https://doi.org/10.1111/j.1365-2745.2006.01150.x

    Article  Google Scholar 

  54. Auffret AG, Rico Y, Bullock JM, Hooftman DA, Pakeman R, Soons MB et al (2017) Plant functional connectivity–integrating landscape structure and effective dispersal. J Ecol 105:1648–1656

    Article  Google Scholar 

Download references

Acknowledgements

MLHA was supported by a postdoctoral fellowship by the Consejo Nacional de Ciencia y Tecnología (CONACYT). This work was supported by research funds to YR by Instituto de Ecología A.C. We thank to Antonio Tinoco-Ruiz for his assistance in field work and Luis Rey Flores Pérez for his assistance in editing figures.

Funding

Consejo Nacional de Ciencia y Tecnología (CONACYT) Posdoctoral Fellowship to MLHA. Research funds to YR by Instituto de Ecología A.C.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the work: all authors. Performed the field work and laboratory procedures: MLHA. Analyzed the data: MLHA, YR. Provided reagents and materials: YR, MLHA. Manuscript writing: YR, MLHA. Revised and approved the final version of the manuscript: all authors.

Corresponding authors

Correspondence to María Luisa Herrera-Arroyo or Yessica Rico.

Ethics declarations

Conflicts of interest

The authors declare they have none competing interest.

Sample permit

SEMARNAT 09/N1-0011/04/18.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Supplementary material 2 (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Arroyo, M.L., Rico, Y. & Bedolla-García, B.Y. Morphotype divergence and genetic diversity of Hedeoma piperita Benth. in western Mexico. Mol Biol Rep 47, 8925–8934 (2020). https://doi.org/10.1007/s11033-020-05946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05946-x

Keywords

Navigation