Skip to main content
Log in

The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cyclic dimeric adenosine 3′–5′-monophosphate (c-di-AMP) is a recently discovered nucleotide messenger in bacteria. It plays an important role in signaling, transcription, and cell physiology, such as in bacterial growth, potassium transport, fatty acid synthesis, the metabolic balance of cell wall components, and biofilm formation. Exopolysaccharides (EPSs) have distinct physico-chemical properties and diverse bioactivities including antibacterial, hypolipidemic, and antioxidative activities, and they are widely used in the food, pharmaceutical, and cosmetic industries. Although c-di-AMP has been demonstrated to regulate the biosynthesis of bacterial EPSs, only a single c-di-AMP receptor, CabpA, has been identified in EPS synthesis. With the aim of describing current understanding of the regulation of microbial EPSs, this review summarizes c-di-AMP biosynthesis and degradation as well as the mechanism through which c-di-AMP regulates bacterial EPSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Opoku-Temeng C, Dayal N, Miller J, Sintim HO (2017) Hydroxybenzylidene-indolinones, c-di-AMP synthase inhibitors, have antibacterial and anti-biofilm activities and also re-sensitize resistant bacteria to methicillin and vancomycin. RSC Adv 7(14):8288–8294. https://doi.org/10.1039/c6ra28443d

    Article  CAS  Google Scholar 

  2. Fahmi T, Port GC, Cho KH (2017) c-di-AMP: an essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria. Genes (Basel) 8(8):197–214. https://doi.org/10.3390/genes8080197

    Article  CAS  Google Scholar 

  3. Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiss M, Gibhardt J, Thurmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stulke J (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10(475):3011–3020. https://doi.org/10.1126/scisignal.aal3011

    Article  CAS  Google Scholar 

  4. Cho KH, Kang SO (2013) Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS ONE 8(7):e69425. https://doi.org/10.1371/journal.pone.0069425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gundlach J, Rath H, Herzberg C, Mader U, Stulke J (2016) Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front Microbiol 7:804. https://doi.org/10.3389/fmicb.2016.00804

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gandara C, Alonso JC (2015) DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair (Amst) 27(2015):1–8. https://doi.org/10.1016/j.dnarep.2014.12.007

    Article  CAS  Google Scholar 

  7. Gundlach J, Mehne FM, Herzberg C, Kampf J, Valerius O, Kaever V, Stulke J (2015) An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J Bacteriol 197(20):3265–3274. https://doi.org/10.1128/JB.00564-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moradi M, Guimarães JT, Sahin S (2021) Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Curr Opin Food Sci 40:33–39. https://doi.org/10.1016/j.cofs.2020.06.001

    Article  Google Scholar 

  9. Tabernero A, Cardea S (2020) Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mater Sci Eng C 112:110940. https://doi.org/10.1016/j.msec.2020.110940

    Article  CAS  Google Scholar 

  10. Rana S, Upadhyay LSB (2020) Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. Int J Biol Macromol 157:577–583. https://doi.org/10.1016/j.ijbiomac.2020.04.084

    Article  CAS  PubMed  Google Scholar 

  11. Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X (2019) Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocoll 94:475–499. https://doi.org/10.1016/j.foodhyd.2019.03.032

    Article  CAS  Google Scholar 

  12. Xiong ZQ, Kong LH, Lai PF, Xia YJ, Liu JC, Li QY, Ai LZ (2019) Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. J Dairy Sci 102(6):4925–4934. https://doi.org/10.3168/jds.2018-15572

    Article  CAS  PubMed  Google Scholar 

  13. Song X, Xiong Z, Kong L, Wang G, Ai L (2018) Relationship between putative eps& genes and production of exopolysaccharide in Lactobacillus casei LC2W. Front Microbiol 9:1882. https://doi.org/10.3389/fmicb.2018.01882

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song X, Huang H, Xiong Z, Xia Y, Wang G, Yin B, Ai L (2018) Characterization of a cryptic plasmid isolated from Lactobacillus casei CP002616 and construction of shuttle vectors based on its replicon. J Dairy Sci 101(4):2875–2886. https://doi.org/10.3168/jds.2017-13771

    Article  CAS  PubMed  Google Scholar 

  15. Kong LH, Xiong ZQ, Song X, Xia YJ, Zhang N, Ai LZ (2019) Characterization of a panel of strong constitutive promoters from Streptococcus thermophilus for fine-tuning gene expression. ACS Synth Biol 8(6):1469–1472. https://doi.org/10.1021/acssynbio.9b00045

    Article  CAS  PubMed  Google Scholar 

  16. Dertli E, Mayer MJ, Colquhoun IJ, Narbad A (2015) EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785. Microb Biotechnol. https://doi.org/10.1111/1751-7915.12314

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peng X, Li J, Xu X (2017) c-di-AMP regulates bacterial biofilm formation. Sheng Wu Gong Cheng Xue Bao 33(9):1369–1375. https://doi.org/10.13345/j.cjb.170078

    Article  PubMed  Google Scholar 

  18. Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97(2):189–204. https://doi.org/10.1111/mmi.13026

    Article  CAS  PubMed  Google Scholar 

  19. Romling U (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal 1(33):pe39. https://doi.org/10.1126/scisignal.133pe39

    Article  PubMed  Google Scholar 

  20. Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11(8):513–524. https://doi.org/10.1038/nrmicro3069

    Article  CAS  PubMed  Google Scholar 

  21. Bai YL, Yang J, Zhou X, Ding XX, Eisele LE, Bai GC (2012) Mycobacterium tuberculosis Rv3586 (DacA) Is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS ONE 7(4):e35206. https://doi.org/10.1371/journal.pone.0035206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stulke J, Ficner R, Commichau FM (2015) Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J Biol Chem 290(10):6596–6606. https://doi.org/10.1074/jbc.M114.630418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pham TH, Liang ZX, Marcellin E, Turner MS (2016) Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 62(4):731–738. https://doi.org/10.1007/s00294-016-0600-8

    Article  CAS  PubMed  Google Scholar 

  24. Mehne FM, Schroder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L, Kaever V, Lewis RJ, Kuipers OP, Tittmann K, Stulke J (2014) Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production. J Biol Chem 289(30):21098–21107. https://doi.org/10.1074/jbc.M114.562066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blotz C, Treffon K, Kaever V, Schwede F, Hammer E, Stulke J (2017) Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae. Front Microbiol 8:1328–1338. https://doi.org/10.3389/fmicb.2017.01328

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Davlieva M, Reyes J, Panesso D, Arias CA, Shamoo Y (2017) A novel phosphodiesterase of the GdpP family modulates cyclic di-AMP levels in response to cell membrane stress in daptomycin-resistant Enterococci. Antimicrob Agents Chemother 61(3):e01422–e01416. https://doi.org/10.1128/Aac.01422-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowman L, Zeden MS, Schuster CF, Kaever V, Grundling A (2016) New insights into the cyclic di-adenosine monophosphate (c-di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus. J Biol Chem 291(53):26970–26986. https://doi.org/10.1074/jbc.M116.747709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai Y, Yang J, Eisele LE, Underwood AJ, Koestler BJ, Waters CM, Metzger DW, Bai G (2013) Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol 195(22):5123–5132. https://doi.org/10.1128/JB.00769-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ (2015) An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci USA 112(7):E747–E756. https://doi.org/10.1073/pnas.1416485112

    Article  CAS  PubMed  Google Scholar 

  30. Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10(9):787–792. https://doi.org/10.1038/nchembio.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10(9):780–786. https://doi.org/10.1038/nchembio.1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Li W, He ZG (2013) DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 288(5):3085–3096. https://doi.org/10.1074/jbc.M112.428110

    Article  CAS  PubMed  Google Scholar 

  33. Choi PH, Sureka K, Woodward JJ, Tong L (2015) Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein. MicrobiologyOpen 4(3):361–374. https://doi.org/10.1002/mbo3.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Grundling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci USA 110(22):9084–9089. https://doi.org/10.1073/pnas.1300595110

    Article  PubMed  Google Scholar 

  35. Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Grundling A (2016) Binding of cyclic di-AMP to the Staphylococcus aureus& sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter. J Bacteriol 198(1):98–110. https://doi.org/10.1128/JB.00480-15

    Article  CAS  PubMed  Google Scholar 

  36. Quintana IM, Gibhardt J, Turdiev A, Hammer E, Commichau FM, Lee VT, Magni C, Stulke J (2019) The KupA and KupB proteins of Lactococcus lactis IL1403 are novel c-di-AMP receptor proteins responsible for potassium uptake. J Bacteriol 201(10):e00028–e00019. https://doi.org/10.1128/JB.00028-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW, Bai G (2014) Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J Bacteriol 196(3):614–623. https://doi.org/10.1128/JB.01041-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gundlach J, Kruger L, Herzberg C, Turdiev A, Poehlein A, Tascon I, Weiss M, Hertel D, Daniel R, Hanelt I, Lee VT, Stulke J (2019) Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J Biol Chem 294(24):9605–9614. https://doi.org/10.1074/jbc.RA119.008774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux D, Cywes-Bentley C, Zhang YF, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL, Skurnik D, Pier GB (2015) Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis& biofilm matrix. J Biol Chem 290(31):19261–19272. https://doi.org/10.1074/jbc.M115.648709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA (2018) Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis& biofilm formation and plant attachment. mBio 9(2):e00341–e00318. https://doi.org/10.1128/mBio.00341-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J, Hung DC, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187(12):4064–4076. https://doi.org/10.1128/JB.187.12.4064-4076.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng X, Michalek S, Wu H (2016) Effects of diadenylate cyclase deficiency on synthesis of extracellular polysaccharide matrix of Streptococcus mutans revisit. Environ Microbiol 18(11):3612–3619. https://doi.org/10.1111/1462-2920.13440

    Article  CAS  PubMed  Google Scholar 

  43. Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y (2016) Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 18(3):904–922. https://doi.org/10.1111/1462-2920.13123

    Article  CAS  PubMed  Google Scholar 

  44. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9(12):834–839. https://doi.org/10.1038/nchembio.1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS (2015) Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J Biol Chem 290(26):16393–16402. https://doi.org/10.1074/jbc.M115.641340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chin KH, Liang JM, Yang JG, Shih MS, Tu ZL, Wang YC, Sun XH, Hu NJ, Liang ZX, Dow JM, Ryan RP, Chou SH (2018) Structural insights into the distinct binding mode of cyclic di-AMP with SaCpaA_RCK. Biochemistry 57(28):4236. https://doi.org/10.1021/acs.biochem.8b00686

    Article  CAS  PubMed  Google Scholar 

  47. Muller M, Hopfner KP, Witte G (2015) c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589(1):45–51. https://doi.org/10.1016/j.febslet.2014.11.022

    Article  CAS  PubMed  Google Scholar 

  48. Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158(6):1389–1401. https://doi.org/10.1016/j.cell.2014.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci USA 114(35):E7226–E7235. https://doi.org/10.1073/pnas.1704756114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31871776 and 31771956), Natural Science Foundation of Shanghai (Grant No. 18ZR1426800), Shanghai Agriculture Applied Technology Development Program (Grant No. 2019-02-08-00-07-F01152), and Shanghai Engineering Research Center of Food Microbiology (Grant No. 19DZ2281100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Zhong Ai.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, ZQ., Fan, YZ., Song, X. et al. The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Mol Biol Rep 47, 9149–9157 (2020). https://doi.org/10.1007/s11033-020-05930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05930-5

Keywords