Skip to main content
Log in

Functional characterization of asnC family transcriptional regulator in Pseudomonas aeruginosa PGPR2 during root colonization

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcriptional regulators in bacteria are the crucial players in mediating communication between environmental cues and DNA transcription through a complex network process. Pseudomonas aeruginosa PGPR2 is an efficient root colonizer and a biocontrol strain. Previously, we identified that the transcriptional regulator, asnC, negatively regulates the corn root colonization of P. aeruginosa PGPR2. In a transposon insertion sequencing (INSeq) screen, the asnC insertion mutant was positively selected during root colonization, meaning the disruption of asnC improves the fitness of the P. aeruginosa PGPR2 strain for the root colonization. In this study, we constructed isogenic mutant of asnC family transcriptional regulator encoded by PGPR2_17510 by allele exchange mutagenesis. The ΔasnC mutant was able to efficiently colonize corn roots with a twofold increase in population when compared to the wild-type strain. Similarly, the mutant strain outcompeted the wild-type strain in a competition assay, where the mutant strain represented 90% of the total population recovered from the root. We compared the whole transcriptome of the wild-type and the ΔasnC mutant of P. aeruginosa PGPR2 when exposed to the corn root exudates. The RNA-Seq revealed that a total of 360 genes were differentially expressed in the ΔasnC strain of P. aeruginosa PGPR2. Inactivation of asnC transcriptional regulator resulted in the up-regulation of several genetic factors implicated in metabolism, uptake of nutrients, motility, stress response, and signal transduction, which could play crucial roles in root colonization. This notion was further validated by phenotypic characterization and quantification of transcription pattern of selected genes associated with metabolism, motility, and carbon catabolite repression between wild type and mutant strain, which was in agreement with transcriptome data. Similarly, ΔasnC strain formed increased biofilm on abiotic surface validating our RNA-seq analysis, where transcript levels of several genes associated with biofilm formation were up-regulated in the mutant strain. We report that the inactivation of an asnC family transcriptional regulator encoded by PGPR2_17510 enhances the root colonization and biofilm-forming ability of P. aeruginosa PGPR2. Together, our results provide evidence for the molecular adaptations that enable ΔasnC mutant strain to colonize on the corn roots and to form a biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164. https://doi.org/10.1016/j.chembiol.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  2. Anton BP, Saleh L, Benner JS, Raleigh EA, Kasif S, Roberts RJ (2008) RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc Natl Acad Sci USA 105:1826–1831. https://doi.org/10.1073/pnas.0708608105

    Article  PubMed  Google Scholar 

  3. Arragain S, Garcia-Serres R, Blondin G et al (2010) Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J Biol Chem 285:5792–5801. https://doi.org/10.1074/jbc.M109.065516

    Article  CAS  PubMed  Google Scholar 

  4. Baek CH, Wang S, Roland KL, Curtiss R (2009) Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 191:1278–1292. https://doi.org/10.1128/JB.01142-08

    Article  CAS  PubMed  Google Scholar 

  5. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20. https://doi.org/10.1093/nar/gks1039

    Article  CAS  PubMed  Google Scholar 

  6. Barahona E, Navazo A, Martínez-Granero F et al (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419. https://doi.org/10.1128/AEM.00320-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577. https://doi.org/10.1139/w04-035

    Article  CAS  PubMed  Google Scholar 

  8. Bazire A, Shioya K, Soum-Soutéra E, Bouffartigues E, Ryder C, Guentas-Dombrowsky L, Hémery G, Linossier I, Chevalier S, Wozniak DJ, Lesouhaitier O, Dufour A (2010) The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol 192:3001–3010. https://doi.org/10.1128/JB.01633-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bertani B, Ruiz N (2018) Function and biogenesis of lipopolysaccharides. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0001-2018

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brinkman AB, Dahlke I, Tuininga JE, Lammers T, Dumay V, de Heus E, Lebbink JH, Thomm M, de Vos WM, van Der Oost J (2000) An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169. https://doi.org/10.1074/jbc.M005916200

    Article  CAS  PubMed  Google Scholar 

  11. Brinkman AB, Ettema TJ, De Vos WM, Van Der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294. https://doi.org/10.1046/j.1365-2958.2003.03442.x

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Rosner MH, Calvo JM (2001) Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. J Mol Biol 312:625–635. https://doi.org/10.1006/jmbi.2001.4955

    Article  CAS  PubMed  Google Scholar 

  13. Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, Malmstrom RR, Deutschbauer AM, Dangl JL, Visel A (2017) Genome-wide identification of bacterial plant colonization genes. PLoS Biol 15:e2002860. https://doi.org/10.1371/journal.pbio.2002860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431

    Article  CAS  PubMed  Google Scholar 

  15. D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2:359–372. https://doi.org/10.1111/j.1758-2229.2009.00104.x

    Article  CAS  PubMed  Google Scholar 

  16. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative Eubacteria. J Bacteriol 172:6568–6572. https://doi.org/10.1128/jb.172.11.6568-6572.1990

    Article  PubMed  PubMed Central  Google Scholar 

  17. Del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837. https://doi.org/10.1093/jxb/erv099

    Article  CAS  PubMed  Google Scholar 

  18. Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wirén N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbial 12:116. https://doi.org/10.1186/1471-2180-12-116

    Article  CAS  Google Scholar 

  19. Filiatrault MJ, Stodghill PV, Wilson J, Butcher BG, Chen H, Myers CR, Cartinhour SW (2013) CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol 10:245–255. https://doi.org/10.4161/rna.23019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 6:36–44. https://doi.org/10.1111/j.1751-7915.2012.00358.x

    Article  CAS  PubMed  Google Scholar 

  21. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. https://doi.org/10.1038/nrmicro1129

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  23. He L, Dai K, Wen X et al (2018) QseC mediates osmotic stress resistance and biofilm formation in Haemophilus parasuis. Front Microbiol 9:212. https://doi.org/10.3389/fmicb.2018.00212

    Article  PubMed  PubMed Central  Google Scholar 

  24. Illakkiam D, Ponraj P, Shankar M, Muthusubramanian S, Rajendhran J, Gunasekaran P (2013) Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina. Appl Biochem Biotechnol 171:2176–2185. https://doi.org/10.1007/s12010-013-0469-7

    Article  CAS  PubMed  Google Scholar 

  25. Illakkiam D, Ponraj P, Shankar M, Rajendhran J, Gunasekaran P (2014) Genome sequencing of a mung bean plant growth promoting strain of Pseudomonas aeruginosa with biocontrol ability. Int J Genomics 2014:123058. https://doi.org/10.1155/2014/123058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leech AJ, Mattick JS (2006) Effect of site-specific mutations in different phosphotransfer domains of the chemosensory protein ChpA on Pseudomonas aeruginosa motility. J Bacteriol 188:8479–8486. https://doi.org/10.1128/JB.00157-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lemanceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF (2009) Role of iron in plant–microbe interactions. Adv Bot Res 51:491–549. https://doi.org/10.1016/S0065-2296(09)51012-9

    Article  CAS  Google Scholar 

  28. Little RH, Grenga L, Saalbach G, Howat AM, Pfeilmeier S, Trampari E, Malone JG (2016) Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation. PLoS Genet 12:e1005837. https://doi.org/10.1371/journal.pgen.1005837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Z, Beskrovnaya P, Melnyk RA, Hossain SS, Khorasani S, O’Sullivan LR, Wiesmann CL, Bush J, Richard JD, Haney CH (2018) A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. MBio 9:e00433–e518. https://doi.org/10.1128/mBio.00433-18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Chen Y, Li L, Yang E, Wang Y, Wu H, Zhang L, Wang W, Zhang B (2019) Characterization and engineering of the Lrp/AsnC family regulator SACE_5717 for erythromycin overproduction in Saccharopolyspora erythraea. J Ind Microbiol Biot 46:1013–1024. https://doi.org/10.1007/s10295-019-02178-2

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  32. Ma KY, Sun MY, Dong W, He CQ, Chen FL, Ma YL (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151. https://doi.org/10.1016/j.bcab.2016.03.008

    Article  Google Scholar 

  33. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305–316. https://doi.org/10.1046/j.1365-2958.1999.01600.x

    Article  CAS  PubMed  Google Scholar 

  34. Madhusudhan KT, Huang N, Sokatch JR (1995) Characterization of BkdR-DNA binding in the expression of the bkd operon of Pseudomonas putida. J Bacteriol 177:636–641. https://doi.org/10.1128/jb.177.3.636-641.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mailloux RJ, Singh R, Brewer G, Auger C, Lemire J, Appanna VD (2009) α-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant α-ketoglutarate during oxidative stress in Pseudomonas fluorescens. J Bacteriol 191:3804–3810. https://doi.org/10.1128/JB.00046-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci USA 102:17454–17459. https://doi.org/10.1073/pnas.0506407102

    Article  CAS  PubMed  Google Scholar 

  37. Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136. https://doi.org/10.1146/annurev.micro.50.1.101

    Article  CAS  PubMed  Google Scholar 

  38. Moreno R, Fonseca P, Rojo F (2012) Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 83:24–40. https://doi.org/10.1111/j.1365-2958.2011.07912.x

    Article  CAS  PubMed  Google Scholar 

  39. Murray TS, Kazmierczak BI (2006) FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188:6995–7004. https://doi.org/10.1128/JB.00790-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Müsken M, Di Fiore S, Römling U, Häussler S (2010) A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 5:1460

    Article  Google Scholar 

  41. Nelson KE, Weinel C, Paulsen IT et al (2003) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

    Article  Google Scholar 

  42. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795. https://doi.org/10.1038/nprot.2010.110

    Article  CAS  PubMed  Google Scholar 

  43. Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CRH, Coleman J, Tomoyasu T, Matsuzawa H (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31:833–844. https://doi.org/10.1046/j.1365-2958.1999.01221.x

    Article  CAS  PubMed  Google Scholar 

  44. Pandza S, Baetens M, Park CH, Au T, Keyhan M, Matin A (2000) The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 36:414–423. https://doi.org/10.1046/j.1365-2958.2000.01859.x

    Article  CAS  PubMed  Google Scholar 

  45. Payne JW, Smith MW (1994) Peptide transport by micro-organisms. Adv Microb Physiol 36:1–80. https://doi.org/10.1016/S0065-2911(08)60176-9

    Article  CAS  PubMed  Google Scholar 

  46. Peeters E, Charlier D (2010) The Lrp family of transcription regulators in archaea. Archaea. https://doi.org/10.1155/2010/750457

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ponraj P, Shankar M, Ilakkiam D, Gunasekaran P (2012) Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11. Biometals 25:1113–1128. https://doi.org/10.1007/s10534-012-9574-2

    Article  CAS  PubMed  Google Scholar 

  48. Ponraj P, Shankar M, Ilakkiam D, Rajendhran J, Gunasekaran P (2013) Influence of periplasmic oxidation of glucose on pyoverdine synthesis in Pseudomonas putida S11. Appl Microbiol Biotechnol 97:5027–5041. https://doi.org/10.1007/s00253-013-4737-9

    Article  CAS  PubMed  Google Scholar 

  49. Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32:38–55. https://doi.org/10.1111/j.1574-6976.2007.00092.x

    Article  CAS  PubMed  Google Scholar 

  50. Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257. https://doi.org/10.1046/j.1462-2920.1999.00040.x

    Article  CAS  PubMed  Google Scholar 

  51. Qaisar U, Luo L, Haley CL, Brady SF, Carty NL, Colmer-Hamood JA, Hamood AN (2013) The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0062735

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106. https://doi.org/10.1186/gb-2011-12-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santos-Beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. https://doi.org/10.3389/fmicb.2015.00402

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shidore T, Dinse T, Öhrlein J, Becker A, Reinhold-Hurek B (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Enviro Microbiol 14:2775–2787. https://doi.org/10.1111/j.1462-2920.2012.02777.x

    Article  CAS  Google Scholar 

  55. Sivakumar R, Ranjani J, Vishnu US, Jayashree S, Lozano GL, Miles J, Broderick NA, Guan C, Gunasekaran P, Handelsman J, Rajendhran J (2019) Evaluation of InSeq to identify genes essential for Pseudomonas aeruginosa PGPR2 corn root colonization. Genes Genom Genet 9:651–661. https://doi.org/10.1534/g3.118.200928

    Article  CAS  Google Scholar 

  56. Smith RL, Maguire ME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28:217–226. https://doi.org/10.1046/j.1365-2958.1998.00810.x

    Article  CAS  PubMed  Google Scholar 

  57. Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:21866–21871. https://doi.org/10.1073/pnas.pnas.0910308106

    Article  CAS  PubMed  Google Scholar 

  58. Tatke G, Kumari H, Silva-Herzog E, Ramirez L, Mathee K (2015) Pseudomonas aeruginosa MifS-MifR two-component system is specific for α-ketoglutarate utilization. PLoS ONE. https://doi.org/10.1371/journal.pone.0129629

    Article  PubMed  PubMed Central  Google Scholar 

  59. Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, Rafferty JB (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res 34:1439–1449. https://doi.org/10.1093/nar/gkl009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T (2015) Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 79:193–224. https://doi.org/10.1128/MMBR.00052-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890. https://doi.org/10.1128/jb.186.9.2880-2890.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. West SEH, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86. https://doi.org/10.1016/0378-1119(94)90237-2

    Article  CAS  PubMed  Google Scholar 

  63. Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Academic Press, New York, pp 1–18

    Google Scholar 

  64. Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238. https://doi.org/10.1146/annurev-micro-090110-102815

    Article  CAS  PubMed  Google Scholar 

  65. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12:444. https://doi.org/10.1186/1471-2164-12-444

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yokoyama K, Ishijima SA, Clowney L, Koike H, Aramaki H, Tanaka C, Makino K, Suzuki M (2006) Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev 30:89–108. https://doi.org/10.1111/j.1574-6976.2005.00005.x

    Article  CAS  PubMed  Google Scholar 

  67. Yu X, Lund SP, Greenwald JW, Records AH, Scott RA, Nettleton D, Lindow SE, Gross DC, Beattie GA (2014) Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. MBio 5:e01683–e1714. https://doi.org/10.1128/mBio.01683-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RS acknowledges the Council of Scientific and Industrial Research (CSIR) for providing Senior Research Fellowship (09/201/0416/2016-EMR-I). The UGC-CAS, NRCBS, DBT-IPLS, DST-PURSE, DST-FIST Programs of the School of Biological Sciences, Madurai Kamaraj University is gratefully acknowledged.

Funding

No funding was received to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

JR, PG, and RS conceived and designed the work. RS performed the experiments. RS and JR analyzed and interpreted data. RS, PG, and JR wrote the manuscript.

Corresponding author

Correspondence to Jeyaprakash Rajendhran.

Ethics declarations

Conflict of interest

The authors declare that he/she has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 561 kb)

Supplementary file2 (XLS 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, R., Gunasekaran, P. & Rajendhran, J. Functional characterization of asnC family transcriptional regulator in Pseudomonas aeruginosa PGPR2 during root colonization. Mol Biol Rep 47, 7941–7957 (2020). https://doi.org/10.1007/s11033-020-05872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05872-y

Keywords

Profiles

  1. Jeyaprakash Rajendhran