Skip to main content
Log in

Claudin 1 inhibits cell migration and increases intercellular adhesion in triple-negative breast cancer cell line

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Triple-negative “claudin 1 low” subtype represents around 15% of breast cancer and displays poor prognosis. The loss of claudin 1 is correlated with increased invasiveness and higher recurrence of the disease. Claudin 1 constitutes the backbone of the tight junction and is involved in cell-cell adhesion and migration processes. However, studies showed a controversial role of claudin 1 in cell migration. In this study, we aimed to clarify the effect of claudin 1 on migration of mesenchymal triple-negative breast cancer cells (TNBC). We reported that transient over expression of claudin 1 in MDA-MB-231 and Hs578T “claudin 1 low” TNBC cells inhibited cell migration using wound healing and transwell migration assays. In order to investigate more specifically the involvement of claudin 1, we generated stable MDA-MB-231 clones overexpressing claudin 1. Interestingly, the level of claudin 1 was correlated to the inhibition of cell migration and to the increase of cell-cell aggregation associated with enhanced formation of β-catenin adherens junction and occludin tight junction. Finally, we reported for the first time the key role of claudin 1 in the inhibition of cell migration process associated with the disappearance of stress fibers. These data suggest that re-expression of claudin 1 could be a promising strategy for regulating the migration of TNBC which no longer express claudin 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CLDN1:

Claudin 1

TJ:

Tight junction

EMT:

Epithelial–mesenchymal transition

MSL:

Mesenchymal-stem-like

DOCK:

Dedicator of cytokinesis

AJ:

Adherent junction

ZO-1:

Zonula occludens-1

TNBC:

Triple negative breast cancer

FCS:

Fetal calf serum

PDZ-domain-binding-motif:

PSD95, DlgA, ZO-1 domain binding motif

CSRP2:

Cysteine-rich-protein 2

References

  1. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng S-WG, Morin GB, Watson P, Gelmon K, Chia S, Chin S-F, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399. https://doi.org/10.1038/nature10933

    Article  CAS  PubMed  Google Scholar 

  2. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SAW, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688–1698. https://doi.org/10.1158/1078-0432.CCR-14-0432

    Article  CAS  PubMed  Google Scholar 

  5. Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK (2015) Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci 36:822–846. https://doi.org/10.1016/j.tips.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  6. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76. https://doi.org/10.1186/gb-2007-8-5-r76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. https://doi.org/10.1186/bcr2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu S, Singh K, Mangray S, Tavares R, Noble L, Resnick MB, Yakirevich E (2013) Claudin expression in high-grade invasive ductal carcinoma of the breast: correlation with the molecular subtype. Mod Pathol  26:485–495. https://doi.org/10.1038/modpathol.2012.187

    Article  CAS  Google Scholar 

  9. Zhou B, Moodie A, Blanchard AAA, Leygue E, Myal Y (2015) Claudin 1 in breast cancer: new insights. J Clin Med 4:1960–1976. https://doi.org/10.3390/jcm4121952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17:564–580. https://doi.org/10.1038/nrm.2016.80

    Article  CAS  PubMed  Google Scholar 

  11. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550. https://doi.org/10.1083/jcb.141.7.1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408. https://doi.org/10.1083/jcb.141.2.397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569. https://doi.org/10.1152/physrev.00019.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta BBA 1778:631–645. https://doi.org/10.1016/j.bbamem.2007.10.018

    Article  CAS  PubMed  Google Scholar 

  15. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754. https://doi.org/10.1016/j.cell.2006.06.043

    Article  CAS  PubMed  Google Scholar 

  16. Van Itallie CM, Tietgens AJ, Anderson JM (2017) Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell 28:524–534. https://doi.org/10.1091/mbc.E16-10-0698

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morohashi S, Kusumi T, Sato F, Odagiri H, Chiba H, Yoshihara S, Hakamada K, Sasaki M, Kijima H (2007) Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int J Mol Med 20:139–143

    PubMed  Google Scholar 

  18. Szasz AM, Tokes AM, Micsinai M, Krenacs T, Jakab C, Lukacs L, Nemeth Z, Baranyai Z, Dede K, Madaras L, Kulka J (2011) Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis 28:55–63. https://doi.org/10.1007/s10585-010-9357-5

    Article  CAS  PubMed  Google Scholar 

  19. Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N, Xu B (2014) A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS ONE 9:e112765. https://doi.org/10.1371/journal.pone.0112765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoevel T, Macek R, Swisshelm K, Kubbies M (2004) Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 108:374–383. https://doi.org/10.1002/ijc.11571

    Article  CAS  PubMed  Google Scholar 

  21. Geoffroy M, Kleinclauss A, Grandemange S, Hupont S, Boisbrun M, Flament S, Grillier-Vuissoz I, Kuntz S (2017) Pro-apoptotic effect of ∆2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1. Breast Cancer Res Treat 165:517–527. https://doi.org/10.1007/s10549-017-4378-2

    Article  CAS  PubMed  Google Scholar 

  22. Majer A, Blanchard AA, Medina S, Booth SA, Myal Y (2016) Claudin 1 expression levels affect miRNA dynamics in human basal-like breast cancer cells. DNA Cell Biol 35:328–339. https://doi.org/10.1089/dna.2015.3188

    Article  CAS  PubMed  Google Scholar 

  23. Chiang C, Chen C (2019) DOCK1 regulates growth and motility through the RRP1B-claudin-1 pathway in claudin-low breast cancer cells. Cancers 11:1762. https://doi.org/10.3390/cancers11111762

    Article  CAS  PubMed Central  Google Scholar 

  24. Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions & adherens junctions. Exp Cell Res 358:39–44. https://doi.org/10.1016/j.yexcr.2017.03.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523. https://doi.org/10.1111/bph.12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehtimäki J, Hakala M, Lappalainen P (2017) Actin filament structures in migrating cells. Handb Exp Pharmacol 235:123–152. https://doi.org/10.1007/164_2016_28

    Article  CAS  PubMed  Google Scholar 

  27. Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA (2009) Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 115:423–428. https://doi.org/10.1007/s10549-008-0086-2

    Article  PubMed  Google Scholar 

  28. Tőkés A-M, Kulka J, Paku S, Szik Á, Páska C, Novák PK, Szilák L, Kiss A, Bögi K, Schaff Z (2005) Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7:R296. https://doi.org/10.1186/bcr983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swisshelm K, Machl A, Planitzer S, Robertson R, Kubbies M, Hosier S (1999) SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 226:285–295. https://doi.org/10.1016/s0378-1119(98)00553-8

    Article  CAS  PubMed  Google Scholar 

  30. Basu M, Sengupta I, Khan MW, Srivastava DK, Chakrabarti P, Roy S, Das C (2017) Dual histone reader ZMYND8 inhibits cancer cell invasion by positively regulating epithelial genes. Biochem J 474:1919–1934. https://doi.org/10.1042/BCJ20170223

    Article  CAS  PubMed  Google Scholar 

  31. Li X-M, Liu W-L, Chen X, Wang Y-W, Shi D-B, Zhang H, Ma R-R, Liu H-T, Guo X-Y, Hou F, Li M, Gao P (2017) Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med 39:927–935. https://doi.org/10.3892/ijmm.2017.2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S (2015) EMT and tumor metastasis. Clin Transl Med. https://doi.org/10.1186/s40169-015-0048-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta BBA 1788:872–891. https://doi.org/10.1016/j.bbamem.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  34. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111. https://doi.org/10.1083/jcb.200110122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoevel T, Macek R, Mundigl O, Swisshelm K, Kubbies M (2002) Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell Physiol 191:60–68. https://doi.org/10.1002/jcp.10076

    Article  PubMed  Google Scholar 

  36. Chao Y-C, Pan S-H, Yang S-C, Yu S-L, Che T-F, Lin C-W, Tsai M-S, Chang G-C, Wu C-H, Wu Y-Y, Lee Y-C, Hong T-M, Yang P-C (2009) Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 179:123–133. https://doi.org/10.1164/rccm.200803-456OC

    Article  CAS  PubMed  Google Scholar 

  37. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta BBA 1773:642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  38. Wang C-Q, Tang C-H, Chang H-T, Li X-N, Zhao Y-M, Su C-M, Hu G-N, Zhang T, Sun X-X, Zeng Y, Du Z, Wang Y, Huang B-F (2016) Fascin-1 as a novel diagnostic marker of triple-negative breast cancer. Cancer Med 5:1983–1988. https://doi.org/10.1002/cam4.746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoffmann C, Mao X, Dieterle M, Moreau F, Al Absi A, Steinmetz A, Oudin A, Berchem G, Janji B, Thomas C (2016) CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis. Oncotarget 7:13688–13705. https://doi.org/10.18632/oncotarget.7327

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hou J, Wang Z, Xu H, Yang L, Yu X, Yang Z, Deng Y, Meng J, Feng Y, Guo X, Yang G (2015) Stanniocalicin 2 suppresses breast cancer cell migration and invasion via the PKC/claudin-1-mediated signaling. PLoS ONE 10:e0122179. https://doi.org/10.1371/journal.pone.0122179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M (2020) Claudin-1, a double-edged sword in cancer. Int J Mol Sci 21:569. https://doi.org/10.3390/ijms21020569

    Article  CAS  PubMed Central  Google Scholar 

  42. Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001) Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem 276:28204–28211. https://doi.org/10.1074/jbc.M103083200

    Article  CAS  PubMed  Google Scholar 

  43. Oku N, Sasabe E, Ueta E, Yamamoto T, Osaki T (2006) Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res 66:5251–5257. https://doi.org/10.1158/0008-5472.CAN-05-4478

    Article  CAS  PubMed  Google Scholar 

  44. Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J, Chen Y (2012) Inflammation and disruption of the mucosal architecture in claudin-7–deficient mice. Gastroenterology 142:305–315. https://doi.org/10.1053/j.gastro.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka M, Kamata R, Sakai R (2005) Phosphorylation of ephrin-B1 via the interaction with claudin following cell–cell contact formation. EMBO J 24:3700–3711. https://doi.org/10.1038/sj.emboj.7600831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22:R116–R120. https://doi.org/10.1016/j.cub.2012.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 6:1855–1867. https://doi.org/10.1074/mcp.M700183-MCP200

    Article  CAS  PubMed  Google Scholar 

  48. Wu C-J, Mannan P, Lu M, Udey MC (2013) Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem 288:12253–12268. https://doi.org/10.1074/jbc.M113.457499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. S.N. Thornton for reviewing the English.

Funding

This work was supported by grants of the “Université de Lorraine”, the “Conseil Régional du Grand Est” and the “Ligue Contre le Cancer”. Marine Geoffroy was recipient of a PhD grant of the « Ministère de l’Enseignement Supérieur et de la Recherche ».

Author information

Authors and Affiliations

Authors

Contributions

MG, SK, IGV designed the study. MG, AK, SK performed the experiments. MG, SK, IGV analyzed the data and wrote the paper. All author reviewed the manuscript.

Corresponding author

Correspondence to Sandra Kuntz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geoffroy, M., Kleinclauss, A., Kuntz, S. et al. Claudin 1 inhibits cell migration and increases intercellular adhesion in triple-negative breast cancer cell line. Mol Biol Rep 47, 7643–7653 (2020). https://doi.org/10.1007/s11033-020-05835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05835-3

Keywords

Navigation