Skip to main content
Log in

Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Enteropathogenic Escherichia coli (EPEC) is a bioagent that causes diarrhea through the formation of biofilm. The recalcitrant of EPEC to the current conventional antibiotic treatment has grown a big concern in a way to find effective alternative inhibitors. Aptamers have been demonstrated to show the ability to kill the pathogenic bacteria through inhibition of biofilm formation. Therefore, this study aimed to investigate antibiofilm activities of six types of aptamers against EPEC K1.1 which was isolated from patients with diarrhea. Environmental conditions such as temperatures and pH which impacted on biofilm formation of EPEC K1.1 and also biofilm inhibition of aptamer on EPEC K1.1 were performed by counting the crystal violet formation in 96-well polystyrene microplates at OD570. The motility examination combined with qPCR were applied to prove the mechanism of aptamers inhibition on biofilm by targeting essential genes that involve biofilm formation. The result showed that by applying cut off value at 0.399, aptamer SELEX 10 Colony 5 exhibited the highest biofilm inhibition against EPEC K1.1 with an absorbance value of 0.126. Further analysis showed that this aptamer also was able to reduce the motility diameter of EPEC K1.1. The effect of this aptamer on EPEC K1.1 motility was confirmed by qPCR where the mRNA level of motB, csgA and lsrA gene reduced significantly compared to the untreated group. Aptamer SELEX 10 Colony 5 was able to inhibit biofilm formation through interfering the motility ability of EPEC K1.1 and also by reducing the mRNA level of biofilm formation-related genes. This study provides evidences that aptamer is effective and promising for both antibiofilm of EPEC K1.1 and alternative treatment of diarrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. [WHO] World Health Organization (2017) Diarrhoeal disease [Online]. Available from: http://www.who.int/mediacentre/diarrhea. Accessed 8 Feb 2019

  2. [Riskesdas] Riset Kesehatan Dasar (2018) Hasil utama riskesdas 2018 Kementerian Kesehatan {Online}. Available from https://www.depkes.go.id. Accessed 8 Feb 2019

  3. Kotloff KL, Nataro JP, Blackwelder WC et al (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. https://doi.org/10.1016/S0140-6736(13)60844-2

    Article  PubMed  Google Scholar 

  4. Budiarti S (1997) Pelekatan pada sel HEp-2 dan keragaman serotipe O Eschericia coli enteropatogenik isolat Indonesia. Berk Ilmu Kedokt 29:105–109

    Google Scholar 

  5. Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. https://doi.org/10.1038/nrmicro818

    Article  CAS  PubMed  Google Scholar 

  6. Budiarti S, Mubarik NR (2007) Extracellular protease activity of enteropathogenic Escherichia coli on mucin substrate. HAYATI J Biosci 14:36–38. https://doi.org/10.4308/hjb.14.1.36

    Article  Google Scholar 

  7. Sicard JF, Vogeleer P, Le Bihan G et al (2018) N-acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut Pathog 10:1–10. https://doi.org/10.1186/s13099-018-0252-y

    Article  CAS  Google Scholar 

  8. Rodrigues RS, da Silva Lima NC, Taborda RL et al (2019) Antibiotic resistance and biofilm formation in children with Enteropathogenic Escherichia coli (EPEC) in Brazilian Amazon. J Infect Dev Ctries 13:698–705. https://doi.org/10.3855/jidc.10674

    Article  CAS  PubMed  Google Scholar 

  9. Jacques M, Aragon V, Tremblay YDN (2010) Biofilm formation in bacterial pathogens of veterinary importance. Anim Health Res Rev 11:97–121. https://doi.org/10.1017/S1466252310000149

    Article  PubMed  Google Scholar 

  10. Lee JH, Kim YG, Cho HS et al (2014) Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine. https://doi.org/10.1016/j.phymed.2014.04.008

    Article  PubMed  Google Scholar 

  11. Potera C (2010) Biofilm dispersing agent rejuvenates older antibiotics. Environ Health Perspect 118:A288

    PubMed Central  Google Scholar 

  12. Jamal M, Tasneem U, Hussain T, Andleeb S (2015) Historical background of biofilm. Res Rev J Microbiol Biotechnol 4:1–14

    CAS  Google Scholar 

  13. Minami M, Takase H, Nakamura M, Makino T (2019) Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has anti-motility and anti-biofilm activity against enteropathogenic Escherichia coli. Drug Discov Ther 13:335–342. https://doi.org/10.5582/ddt.2019.01087

    Article  CAS  PubMed  Google Scholar 

  14. Camesi ABR, Lukito A, Waturangi DE, Kwan HJ (2016) Screening of antibiofilm activity from marine bacteria against pathogenic bacteria. Microbiol Indones 10:87–94. https://doi.org/10.5454/mi.10.3.2

    Article  Google Scholar 

  15. Witsø IL, Rukke HV, Benneche T, Scheie AA (2016) Thiophenone attenuates enteropathogenic Escherichia coli O103:H2 virulence by interfering with AI-2 signaling. PLoS ONE 11:1–16. https://doi.org/10.1371/journal.pone.0157334

    Article  CAS  Google Scholar 

  16. de Oliveira MM, Brugnera DF, do Nascimento JA et al (2012) Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol 234:821–832. https://doi.org/10.1007/s00217-012-1694-y

    Article  CAS  Google Scholar 

  17. Saraswat M, Musante L, Ravidá A et al (2013) Preparative purification of recombinant proteins: current status and future trends. Biomed Res Int. https://doi.org/10.1155/2013/312709

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  19. Sekhon SS, Lee SH, Lee KA et al (2017) Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). Nanoscale. https://doi.org/10.1039/c6nr09408b

    Article  PubMed  Google Scholar 

  20. Reuss AJ, Vogel M, Weigand JE et al (2014) Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations. Biophys J 107:2962–2971. https://doi.org/10.1016/j.bpj.2014.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tseng YT, Wang CH, Chang CP, Bin LG (2016) Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay. Biosens Bioelectron 82:105–111. https://doi.org/10.1016/j.bios.2016.03.073

    Article  CAS  PubMed  Google Scholar 

  22. Ren N, Atyah M, Chen W-Y, Zhou C-H (2017) The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med 15:110. https://doi.org/10.1186/s12967-017-1218-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amraee M, Oloomi M, Yavari A, Bouzari S (2017) DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal Biochem 536:36–44. https://doi.org/10.1016/j.ab.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  24. Kaur H, Bruno JG, Kumar A, Sharma TK (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032. https://doi.org/10.7150/thno.25958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Liu QX, Guo ZH, Lin JS (2018) Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules 23:12–16. https://doi.org/10.3390/molecules23020344

    Article  CAS  Google Scholar 

  26. Shieh YA, Yang SJ, Wei MF, Shieh MJ (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442. https://doi.org/10.1021/nn901374b

    Article  CAS  PubMed  Google Scholar 

  27. Sun H, Zhu X, Lu PY et al (2014) Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther - Nucleic Acids. https://doi.org/10.1038/mtna.2014.32

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ning Y, Cheng L, Ling M et al (2015) Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis 73:1–8. https://doi.org/10.1093/femspd/ftv034

    Article  CAS  Google Scholar 

  29. Wang S, Mao B, Wu M et al (2017) Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-017-0941-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Amilia N, Aprilian T, Mustopa AZ, Budiarto BR, Saepudin E (2019) Bandung International Conference on Food and Health (BICFH 2019), September 26-28th 2019, Bandung Institute of Technology, Bandung, West Java, Indonesia

  31. Ribeiro KVG, Ribeiro C, Dias RS et al (2018) Bacteriophage isolated from sewage eliminates and prevents the establishment of Escherichia coli biofilm. Adv Pharm Bull 8:85–95. https://doi.org/10.15171/apb.2018.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x

    Article  PubMed  Google Scholar 

  33. Mladenović KG, Muruzović M, Žugić-Petrović TD, Čomić LR (2018) The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujev J Sci 40:205–216. https://doi.org/10.5937/kgjsci1840205m

    Article  Google Scholar 

  34. Stepanović S, Ćirković I, Ranin L, Švabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432. https://doi.org/10.1111/j.1472-765X.2004.01513.x

    Article  PubMed  Google Scholar 

  35. Ling H, Kang A, Tan MH et al (2010) The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochem Biophys Res Commun 401:521–526. https://doi.org/10.1016/j.bbrc.2010.09.080

    Article  CAS  PubMed  Google Scholar 

  36. Lee JH, Park JH, Kim JA et al (2011) Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7. Biofouling 27:1095–1104. https://doi.org/10.1080/08927014.2011.633704

    Article  PubMed  Google Scholar 

  37. Mustopa AZ, Umami RN, Putri PH (2015) Identification of bioactive compound from microalga BTM 11 as hepatitis C virus RNA helicase inhibitor. J Biol Indones. https://doi.org/10.14203/jbi.v11i2.2198

    Article  Google Scholar 

  38. Özalp VC, Bilecen K, Kavruk M, Avni Öktem H (2013) Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol 8:387–401. https://doi.org/10.2217/fmb.12.149

    Article  CAS  PubMed  Google Scholar 

  39. Mathlouthi A, Pennacchietti E, De Biase D (2018) Effect of temperature, pH and plasmids on in vitro biofilm formation in Escherichia coli. Acta Nat 10:129–132. https://doi.org/10.32607/20758251-2018-10-4-129-132

    Article  CAS  Google Scholar 

  40. Bavrac AT, Donmez SI (2018) Selection of DNA aptamers to Streptococcus pneumonia and fabrication of graphene oxide based fluorescent assay. Anal Biochem 556:91–98. https://doi.org/10.1016/j.ab.2018.06.024

    Article  CAS  Google Scholar 

  41. Wood TK, Barrios AFG, Herzberg M, Lee JT (2006) Motiliy influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367. https://doi.org/10.1007/s00253-005-0263-8

    Article  CAS  PubMed  Google Scholar 

  42. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293. https://doi.org/10.1046/j.1365-2958.1998.01061.x

    Article  CAS  PubMed  Google Scholar 

  43. Barnhart MM, Chapman MR (2010) Curli biogenesis and function. Annu Rev Microbiol 60:131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106.Curli

    Article  Google Scholar 

  44. Girón JA, Torres AG, Freer E, Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379. https://doi.org/10.1046/j.1365-2958.2002.02899.x

    Article  PubMed  Google Scholar 

  45. Le TT, Chumphukam O, Cass AEG (2014) Determination of minimal sequence for binding an aptamer. A comparison of truncation and hybridization inhibition methods. RSC Adv 4:47227–47233. https://doi.org/10.1039/C4RA08243E

    Article  CAS  Google Scholar 

  46. Kolovskaya OS, Savitskaya AG, Zamay TN et al (2013) Development of bacteriostatic DNA aptamers for Salmonella. J Med Chem 56:1564–1572. https://doi.org/10.1021/jm301856j

    Article  CAS  PubMed  Google Scholar 

  47. Baig IA, Moon JY, Lee SC et al (2015) Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. Biochimica et Biophysica Acta – Prot Proteom 1854:1338–1350. https://doi.org/10.1016/j.bbapap.2015.05.003

    Article  CAS  Google Scholar 

  48. Shum KT, Lui ELH, Wong SCK et al (2011) Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry 50:3261–3271. https://doi.org/10.1021/bi2001455

    Article  CAS  PubMed  Google Scholar 

  49. Marton S, Cleto F, Krieger MA, Cardoso J (2016) Isolation of an aptamer that binds specifically to E. coli. PLoS O 11:e0153637. https://doi.org/10.1371/journal.pone.0153637

    Article  CAS  Google Scholar 

  50. Zhao YW, Wang HX, Jia GC, Li Z (2018) Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli. Sensors 18:2518. https://doi.org/10.3390/s18082518

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Nurlaili Ekawati from Research Center for Biotechnology, Indonesian Institute of Science for her assistance in manuscript preparation.

Funding

This study was fully funded and supported by Research Center for Biotechnology, Indonesian Institute of Science by Prioritas Nasional (PN) Obat 2018–2019 scheme. And also funded by Lembaga Ilmu Pengetahuan Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apon Zaenal Mustopa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oroh, S.B., Mustopa, A.Z., Budiarti, S. et al. Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Mol Biol Rep 47, 7567–7573 (2020). https://doi.org/10.1007/s11033-020-05822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05822-8

Keywords

Navigation