Skip to main content

Isolation and characterization of 15 new microsatellite markers for the globally endangered Lear’s macaw Anodorhynchus leari

Abstract

A set of 16 microsatellite markers was characterized for Lear’s macaw (Anodorhynchus leari) using DNA samples from captive individuals. Extending this molecular toolkit, including the use of samples from wild individuals, is expected to provide the required power of resolution for pedigree inference of both wild and captive individuals, and could support research on the genetic structure of wild populations. We characterize a set of 15 microsatellite markers optimized for the Lear’s macaw, developed from a microsatellite-enriched library in a three-step procedure. Primer pairs were initially designed for 62 microsatellites with > 7 tandem repetitions. After amplification of DNA of five wild individuals from different localities, 22 loci seemed to be polymorphic and were further tested on 12 wild nestling samples. Fifteen unlinked loci showed unambiguous peaks and low to moderate polymorphism levels. The combination of the four most polymorphic markers allowed individual identification even of putative sibs.These markers complement previously described microsatellites developed for A. leari and constitute a fundamental genetic toolkit for the investigation of the genetics of both wild and captive populations, thus assisting integrated management plans for the conservation of this globally endangered species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Berkunsky I, Quillfeldt P, Brightsmith DJ et al (2017) Current threats faced by Neotropical parrot populations. Biol Conserv 214:278–287. https://doi.org/10.1016/j.biocon.2017.08.016

    Article  Google Scholar 

  2. 2.

    Romero-Vidal P, Hiraldo F, Rosetto F, Blanco G, Carrete M, Tella JL (2020) Opportunistic or non-random wildlife crime? Attractiveness rather than abundances in the wild leads to selective parrot poaching. Diversity 12:314. https://doi.org/10.3390/d12080314

    Article  Google Scholar 

  3. 3.

    Olah G, Butchart SH, Symes A, Guzmán IM, Cunningham R, Brightsmith DJ, Heinsohn R (2016) Ecological and socio-economic factors affecting extinction risk in parrots. Biodivers Conserv 25:205–223. https://doi.org/10.1007/s10531-015-1036-z

    Article  Google Scholar 

  4. 4.

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. https://doi.org/10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  5. 5.

    Raisin C, Frantz AC, Kundu S, Greenwood AG, Jones CG, Zuel N, Groombrdge JJ (2012) Genetic consequences of intensive conservation for the Mauritius parakeet. Conserv Genet 13:707–715. https://doi.org/10.1007/s10592-012-0319-0

    Article  Google Scholar 

  6. 6.

    Holderegger R, Balkenhol N, Bolliger J, Engler JO, Gugerli F, Hochkirch A, Nowak C, Segelbacher G, Widmer A, Zachos FE (2019) Conservation genetics: linking science with practice. Mol Ecol 28:3848–3856. https://doi.org/10.1111/mec.15202

    Article  PubMed  Google Scholar 

  7. 7.

    Olah G, Heinsohn RG, Brightsmith DJ, Espinoza JR, Peakall R (2016) Validation of non-invasive genetic tagging in two large macaw species (Ara macao and A. chloropterus) of the Peruvian Amazon. Conserv Genet Resour 8:499–509. https://doi.org/10.1007/s12686-016-0573-4

    Article  Google Scholar 

  8. 8.

    Rivera-Ortiz FA, Solórzano S, Arizmendi MC, Dávila-Aranda P, Oyama K (2017) Genetic diversity and structure of the Military Macaw (Ara militaris) in Mexico: implications for conservation. Trop Conserv Sci 10:1–12. https://doi.org/10.1177/1940082916684346

    Article  Google Scholar 

  9. 9.

    Presti FT, Wasko AP (2014) A review of microsatellite markers and their application on genetic diversity studies in parrots. Open J Genet 4:69–77. https://doi.org/10.4236/ojgen.2014.42010

    Article  Google Scholar 

  10. 10.

    BirdLife I (2017) Anodorhynchus leari (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017:e.T22685521A119259023. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22685521A119259023.en

  11. 11.

    Filadelfo T, Pacífico E (2017) Urgent strategy to recover a functionally extinct population of Lear’s Macaw and rescue its habitat. International Congress Conservation Biology - ICCB 2017. Cartagena, Colombia, 23–27 July 2017. Knowledge Café: Threatened species management and recovery. Book of Abstracts, p. 459

  12. 12.

    Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. https://doi.org/10.1111/j.1365-294X.2007.03399.x

    Article  PubMed  Google Scholar 

  13. 13.

    Jan C, Fumagalli L (2016) Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). PeerJ 4:e2416. https://doi.org/10.7717/peerj.2416

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Pacífico EC, Barbosa EA, Filadelfo T, Oliveira KG, Silveira LF, Tella JL (2014) Breeding to non-breeding population ratio and breeding performance of the globally endangered Lear’s Macaw (Anodorhynchus leari): conservation and monitoring implications. Bird Conserv Int 24:466–476. https://doi.org/10.1017/S095927091300049X

    Article  Google Scholar 

  15. 15.

    Gebhardt KJ, Brightsmith D, Powell G, Waits LP (2009) Molted feathers from clay licks in Peru provide DNA for three large Macaws (Ara ararauna, A. chloropterus and A. macao). J Field Ornithol 80:183–192. https://doi.org/10.1111/j.1557-9263.2009.00221.x

    Article  Google Scholar 

  16. 16.

    Untergrasser A, Cutcutache I, Koressar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    CAS  Article  Google Scholar 

  17. 17.

    Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Resour 2:377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2

    Article  Google Scholar 

  19. 19.

    Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  20. 20.

    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x

    Article  PubMed  Google Scholar 

  21. 21.

    ICMBio (2012) Arara-azul-de-Lear. In Plano de ação nacional para a conservação da arara-azul-de-lear (Lugarini C, Barbosa AEA, Oliveira KG (eds)), 2 ed. Série Espécies Ameaçadas, vol. 4. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio, Brasilia. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-arara-de-lear/pan-arara-azul-de-lear.pdf

  22. 22.

    Presti FT, Guedes NMR, Antas PTZ, Miyaki CY (2015) Population genetic structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and identification of the probable origin of confiscated individuals. J Hered 106:491–502. https://doi.org/10.5061/dryad.25tf0

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ferreira JM, Burnham-Curtis M, Schunck F, Rocha M, Miyaki CY, Silveira LF, Melo M, Morgante JS (2015) Development of novel polymorphic microsatellite markers for four bird species exploited by the illegal wildlife trade in Brazil. Conserv Genet Resour 7:435–436. https://doi.org/10.1007/s12686-014-0389-z

    Article  Google Scholar 

  24. 24.

    Almeida TRA, Presti FT, Cruz VP, Wasko AP (2019) Genetic analysis of the endangered Hyacinth Macaw (Anodorhynchus hyacinthinus) based on mitochondrial markers: different conservation efforts are required for different populations. J Ornith 160:711–720. https://doi.org/10.1007/s10336-019-01652-z

    Article  Google Scholar 

  25. 25.

    Pacífico EC, Efstathion CA, Filadelfo T, Horsburgh R, Alves RC, Paschotto FR, Dénes FV, Gilardi J, Tella JL (2020) Experimental removal of invasive Africanized honey bees increased breeding population size of the endangered Lear’s macaw. Pest Manag Sci. https://doi.org/10.1002/ps.5972

    Article  PubMed  Google Scholar 

  26. 26.

    Heinsohn R, Olah O, Webb M, Peakall R, Stojanovic D (2019) Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. J Anim Ecol 88:502–510. https://doi.org/10.1111/1365-2656.12922

    Article  PubMed  Google Scholar 

  27. 27.

    Barbosa AEA, Tella JL (2019) How much does it cost to save a species from extinction? Costs and rewards of conserving the Lear’s macaw. R Soc Open Sci 6:190190

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ana Píriz, Mónica Gutiérrez, for technical support (Laboratory of Molecular Ecology, LEM-EBD) and Doñana ICTS-RBD. Alejandro Centeno-Cuadros, José A. Godoy, Sol Rodríguez-Martínez, Flávia Presti, Fernanda R. Paschotto for discussing the sampling design and helping to organize the manuscript. To Thiago Filadelfo, Fernando Hiraldo-Cano, A. Eduardo A. Barbosa, Dorivaldo M. Alves, Maximo Cardoso, João C. Nogueira, Guilherme Feitosa, Mathew Arundale, Rebecca Green (Erasmus plus), M. Fernanda Lacerda, Fernanda R. Paschotto and Roberta Alves for field work and laboratory work. To Fundação Biodiversitas (Canudos Biological Station), Instituto Arara Azul (Neiva Guedes) and Museu de Zoologia da Universidade de São Paulo (Luís Fabio Silveira) for field work support and for assisting to issue national and international permits.

Funding

Loro Parque Fundación (101-2015) funded this genetic laboratory work. ECP was supported by an international PhD fellowship granted by CAPES (the Brazilian Federal Agency for the Support and Evaluation of Graduate Education). CYM was granted by CNPq (303713/2015-1, 306204/2019-3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erica C. Pacífico.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

Legal permits to conduct the field research, access protected areas in Brazil, handle birds and collect biological material were extended by SISBIO, permit n. 12763. CITES permit n. 14BR016156/DF allowed the transport of blood samples and feathers from Brazil to Spain for genetic analyses. Birds were handled following the guidelines of the Sistema Nacional de Anilhamento (SNA, CEMAVE, ICMBIO, MMA) under the authorization 2991 and bird banding license 458295, according to IN-IBAMA no 27/2002 of 23/12/2002. Blood sampling was approved by the Animal Use Ethical Committee (Comissão de Ética no Uso de Animais, Brazil), protocol 188/2013 (CYM).

Informed consent

All authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pacífico, E.C., Sánchez-Montes, G., Miyaki, C.Y. et al. Isolation and characterization of 15 new microsatellite markers for the globally endangered Lear’s macaw Anodorhynchus leari. Mol Biol Rep 47, 8279–8285 (2020). https://doi.org/10.1007/s11033-020-05812-w

Download citation

Keywords

  • Microsatellite loci
  • Parrots
  • Conservation genetics
  • Lear’s macaw
  • Endangered species