Skip to main content
Log in

Potential role of miR-214 in β-catenin gene expression within hepatocellular carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are important gene regulators whose dysregulations can be involved in tumorigenesis. β-catenin, the main agent in the Wnt/β-catenin pathway, controls various genes and its over-expression has been discovered in different kinds of cancers including Hepatocellular Carcinoma (HCC). Extensive research demonstrated that the Wnt signaling is one of the major affected pathways in HCC. This study aimed to find miRNA targeting β-catenin gene by bioinformatic approaches and confirm this correlation to propose new therapeutic targets for HCC. Prediction of miRNAs targeting 3′-Untranslated Regions (UTR) of β-catenin mRNA, were done using different types of credible bioinformatic databases. The luciferase assay was also recruited for further confirmation of the bioinformatic predictions. In the first step, the expression of β-catenin was assessed in the HepG2 cell line by real-time PCR technique. Next, transduction of HepG2 cells were done by lentiviral vectors containing the desired miRNA. Then, the expression level of miRNA and the β-catenin gene were evaluated. Based on the results obtained from different bioinformatic databases, miR-214 was selected as the potential miRNA with the highest probability in targeting β-catenin. Furthermore, Luciferase assay results confirmed the accuracy of our bioinformatic prediction. In line with our hypothesis, after the overexpression of miR-214 in HepG2 cells, β-catenin gene expression was reduced significantly. Gathered results indicate the miRNAs role in the down-regulation of their target genes. Hence, the results propose that miR-214 can prevent HCC development by suppressing β-catenin and may supply a newfound approach towards HCC therapy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Desai A, Sandhu S, Lai JP, Sandhu DS (2019) Hepatocellular carcinoma in non-cirrhotic liver: a comprehensive review. World J Hepatol 11(1):1–18

    PubMed  PubMed Central  Google Scholar 

  2. Rawla P, Sunkara T, Muralidharan P, Raj JP (2018) Update in global trends and aetiology of hepatocellular carcinoma. Contemp Oncol (Pozn) 22(3):141–150

    CAS  Google Scholar 

  3. Scaggiante B, Kazemi M, Pozzato G, Dapas B, Farra R, Grassi M, Zanconati F, Grassi G (2014) Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials. World J Gastroenterol WJG 20(5):1268

    PubMed  Google Scholar 

  4. Wang CY, Li S (2019) Clinical characteristics and prognosis of 2887 patients with hepatocellular carcinoma: a single center 14 years experience from China. Medicine (Baltim) 98(4):e14070

    Google Scholar 

  5. Greene CM, Varley RB, Lawless MW (2013) MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled. World J Gastroenterol WJG 19(32):5212

    PubMed  Google Scholar 

  6. Khare S, Zhang Q, Ibdah JA (2013) Epigenetics of hepatocellular carcinoma: role of microRNA. World J Gastroenterol WJG 19(33):5439

    PubMed  Google Scholar 

  7. Liu Y, Ding Y, Huang J, Wang S, Ni W, Guan J, Li Q, Zhang Y, Ding Y, Chen B (2014) MiR-141 suppresses the migration and invasion of HCC cells by targeting Tiam1. PLoS ONE 9(2):e88393

    PubMed  PubMed Central  Google Scholar 

  8. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I (2014) Notch signaling: switching an oncogene to a tumor suppressor. Blood 123(16):2451–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, Hazle JD, Elsayes KM (2018) Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 5:61–73

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moeini A, Cornellà H, Villanueva A (2012) Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer 1(2):83–93

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–1447

    Google Scholar 

  12. Joo M, Lee HK, Kang YK (2003) Expression of-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression. J Korean Med Sci 18:211–217

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E, Azadmanesh K, Mostafavi E, Mahdian R, Karimipoor M (2013) Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep 40(5):3665–3674

    CAS  PubMed  Google Scholar 

  14. Tricoli L, Niture S, Chimeh U, Kumar D (2019) Role of microRNAs in the development of hepatocellular carcinoma and acquired drug resistance. Front Biosci (Landmark Ed) 24:545–554

    CAS  Google Scholar 

  15. Wang J, Lu L, Luo Z, Li W, Lu Y, Tang Q, Pu J (2019) miR-383 inhibits cell growth and promotes cell apoptosis in hepatocellular carcinoma by targeting IL-17 via STAT3 signaling pathway. Biomed Pharmacother 120:109551

    CAS  PubMed  Google Scholar 

  16. Ahsani Z, Mohammadi-Yeganeh S, Kia V, Karimkhanloo H, Zarghami N, Paryan M (2017) WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Appl Biochem Biotechnol 181(3):884–897

    CAS  PubMed  Google Scholar 

  17. Karimkhanloo H, Mohammadi-Yeganeh S, Ahsani Z, Paryan M (2017) Bioinformatics prediction and experimental validation of microRNA-20a targeting Cyclin D1 in hepatocellular carcinoma. Tumor Biol 39(4):1010428317698361

    Google Scholar 

  18. Zhu Y, Xie J, Sun H (2019) Three miRNAs cooperate with host genes involved in human cardiovascular disease. Hum Genomics 13(1):40

    PubMed  PubMed Central  Google Scholar 

  19. Karimkhanloo H, Paryan M, Darabi M, Mohamadi-Yeganeh S, Ahsani Z (2016) Bioinformatic investigation of mirnas involved in the regulation of beta-catenin and cyclin D1 expression. Int J Adv Biotechnol Res 7(2):701–709

    CAS  Google Scholar 

  20. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    CAS  PubMed  Google Scholar 

  22. Paryan M, Mohammadi-Yeganeh S, Samiee SM, Soleimani M, Arefian E, Azadmanesh K, Poopak B, Mostafavi E, Karimipoor M, Mahdian R (2013) Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples. Mol Biol Rep 40(10):5531–5540

    CAS  PubMed  Google Scholar 

  23. Renard C-A, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A (2007) Tbx3 is a downstream target of the Wnt/β-catenin pathway and a critical mediator of β-catenin survival functions in liver cancer. Cancer Res 67(3):901–910

    CAS  PubMed  Google Scholar 

  24. Cui J, Zhou X, Liu Y, Tang Z, Romeih M (2003) Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T‐cell factor‐4 and glycogen synthase kinase 3‐beta genes. J Gastroenterol Hepatol 18(3):280–287

    CAS  PubMed  Google Scholar 

  25. Shi J, Keller J, Zhang J, Keller E (2014) A review on the diagnosis and treatment of hepatocellular carcinoma with a focus on the role of wnts and the dickkopf family of wnt inhibitors. J Hepato Carcinoma 1:1–7

    Google Scholar 

  26. Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6(1):24

    PubMed  PubMed Central  Google Scholar 

  27. Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian X-W, Kung H-f, Lin MC (2010) miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun 391(1):535–541

    CAS  PubMed  Google Scholar 

  28. Abedi N, Mohammadi-Yeganeh S, Koochaki A, Karami F, Paryan M (2015) miR-141 as potential suppressor of β-catenin in breast cancer. Tumor Biol 36:1–7

    Google Scholar 

  29. Le Quesne J, Caldas C (2010) Micro-RNAs and breast cancer. Mol Oncol 4(3):230–241

    PubMed  PubMed Central  Google Scholar 

  30. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang B, Xi Y (2013) Challenges for microRNA microarray data analysis. Microarrays 2(2):34–50

    CAS  PubMed Central  Google Scholar 

  32. Wahid F, Khan T, Kim YY (2014) MicroRNA and diseases: therapeutic potential as new generation of drugs. Biochimie 104:12–26

    CAS  PubMed  Google Scholar 

  33. Gong J, He X-X, Tian D-A (2015) Emerging role of microRNA in hepatocellular carcinoma (review). Oncol Lett 9(3):1027–1033

    PubMed  Google Scholar 

  34. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545

    CAS  PubMed  Google Scholar 

  35. Bader AG (2012) miR-34–a microRNA replacement therapy is headed to the clinic. Front Genet 3:120

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L, D’Abundo L, Ferracin M, Bassi C (2012) Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 56(3):1025–1033

    CAS  PubMed  Google Scholar 

  37. Zhang J, Jiao J, Cermelli S, Muir K, Jung KH, Zou R, Rashid A, Gagea M, Zabludoff S, Kalluri R (2015) miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24 + progenitor cells. Cancer Res 75(9):1859–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang N, Ekanem NR, Sakyi CA, Ray SD (2015) Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev 81:62–74

    CAS  PubMed  Google Scholar 

  39. Ritchie W, Rasko JE, Flamant S (2013) MicroRNA target prediction and validation. In: Schmitz U, Wolkenhauer O, Vera J (eds) MicroRNA cancer regulation. Springer, Dordrecht, pp 39–53

    Google Scholar 

  40. Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C (2012) MicroRNA miR-548d is a superior regulator in pancreatic cancer. Pancreas 41(2):218–221

    CAS  PubMed  Google Scholar 

  41. Li Y, Zhang Z (2015) Computational biology in microRNA. Wiley, Hoboken

    Google Scholar 

  42. Cho WC (2010) MicroRNAs in cancer—from research to therapy. Biochim Biophys Acta (BBA) 1805(2):209–217

    CAS  Google Scholar 

  43. Tsao CM, Yan MD, Shih YL, Yu PN, Kuo CC, Lin WC, Li HJ, Lin YW (2012) SOX1 functions as a tumor suppressor by antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatology 56(6):2277–2287

    CAS  PubMed  Google Scholar 

  44. Gyöngyösi B, Végh É, Járay B, Székely E, Fassan M, Bodoky G, Schaff Z, Kiss A (2014) Pretreatment MicroRNA level and outcome in sorafenib-treated hepatocellular carcinoma. J Histochem Cytochem 62(8):547–555

    PubMed  Google Scholar 

  45. Zhang Z, Yin J, Yang J, Shen W, Zhang C, Mou W, Luo J, Yan H, Sun P, Luo Y (2016) miR-885-5p suppresses hepatocellular carcinoma metastasis and inhibits Wnt/β-catenin signaling pathway. Oncotarget 7(46):75038

    PubMed  PubMed Central  Google Scholar 

  46. Tao J, Zhang R, Singh S, Poddar M, Xu E, Oertel M, Chen X, Ganesh S, Abrams M, Monga SP (2017) Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β‐catenin and K‐Ras in mice. Hepatology 65(5):1581–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang K-C, Xi H-Q, Cui J-X, Shen W-S, Li J-Y, Wei B, Chen L (2015) Hemolysis-free plasma miR-214 as novel biomarker of gastric cancer and is correlated with distant metastasis. Am J Cancer Res 5(2):821

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Pasteur Institute of Iran, Tehran, Iran. The authors should thank Stem Cell technology Research Center, Tehran, Iran, and also Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences for providing technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Mohammadi-Yeganeh or Mahdi Paryan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

It is not applicable in this study because the research was completely based on in vitro investigation and no human samples have been used in this project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhanloo, H., Mohammadi-Yeganeh, S., Hadavi, R. et al. Potential role of miR-214 in β-catenin gene expression within hepatocellular carcinoma. Mol Biol Rep 47, 7429–7437 (2020). https://doi.org/10.1007/s11033-020-05798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05798-5

Keywords

Navigation