Skip to main content

Advertisement

Log in

Isolation, characterisation and phagocytic function of human macrophages from human peripheral blood

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Macrophages are among the most important cells of the immune system. Among other functions, they take part in almost all defense actions against foreign bodies and bacteria, being particularly important in infections, wound healing, and foreign body reactions. Considering their importance for the health of the human body, as well as their important role in several diseases, the in vitro studies based on these cells, are a crucial research field. Taking all mentioned into account, this study describes a simple isolation method of human macrophages (MFUM-HMP-001 and MFUM-HMP-002 cell lines) from peripheral blood. For this purpose, the morphology, the viability, and the phagocytotic activity of the isolated cells were tested. The Immunostaining of MFUM-HMP-001 and MFUM-HMP-002 cells confirmed the macrophage cell markers CD68, CD80, and CD163/M130. The phagocytotic activity was marked in both MFUM-HMP-001 and MFUM-HMP-002 cells, as was the phagocytosis of the pHrodo green Escherichia coli bioparticles conjugates, which was enhanced with the addition of lipopolysaccharide. The cells were stable and exhibited good growth. According to our results, both cell lines are useful for the development of novel macrophage cell-based in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data is included in the paper.

References

  1. Rosales C, Uribe-Querol E (2017) Phagocytosis: a fundamental process in immunity. Biomed Res Int 2017:9042851. https://doi.org/10.1155/2017/9042851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chung L, Maestas DR Jr, Housseau F, Elisseeff JH (2017) Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 114:184–192. https://doi.org/10.1016/j.addr.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Hart J (2002) Inflammation. 1: its role in the healing of acute wounds. J Wound Care 11(6):205–209. https://doi.org/10.12968/jowc.2002.11.6.26411

    Article  CAS  PubMed  Google Scholar 

  4. Flanagan M (2000) The physiology of wound healing. J Wound Care 9(6):299–300. https://doi.org/10.12968/jowc.2000.9.6.25994

    Article  CAS  PubMed  Google Scholar 

  5. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45(4):319–326. https://doi.org/10.1002/jcb.240450403

    Article  CAS  PubMed  Google Scholar 

  6. Ramasastry SS (2005) Acute wounds. Clin Plast Surg 32(2):195–208. https://doi.org/10.1016/j.cps.2004.12.001

    Article  PubMed  Google Scholar 

  7. Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg. https://doi.org/10.1097/01.prs.0000222562.60260.f9

    Article  PubMed  Google Scholar 

  8. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  9. Funes SC, Rios M, Escobar-Vera J, Kalergis AM (2018) Implications of macrophage polarization in autoimmunity. Immunology 154(2):186–195. https://doi.org/10.1111/imm.12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13(2 Suppl):6–11

    CAS  PubMed  Google Scholar 

  11. Samuels P, Tan AK (1999) Fetal scarless wound healing. J Otolaryngol 28(5):296–302

    CAS  PubMed  Google Scholar 

  12. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528

    Article  CAS  PubMed  Google Scholar 

  13. Velnar T, Bauley T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542. https://doi.org/10.1177/147323000903700531

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence WT (1998) Physiology of the acute wound. Clin Plast Surg 25(3):321–340

    Article  CAS  PubMed  Google Scholar 

  15. Lemperle G, Morhenn V, Charrier U (2003) Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic Plast Surg 27(5):354–366. https://doi.org/10.1007/s00266-003-3022-1

    Article  PubMed  Google Scholar 

  16. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78(3):377–396. https://doi.org/10.1902/jop.2007.060048

    Article  PubMed  Google Scholar 

  17. Strecker-McGraw MK, Jones TR, Baer DG (2007) Soft tissue wounds and principles of healing. Emerg Med Clin North Am 25(1):1–22. https://doi.org/10.1016/j.emc.2006.12.002

    Article  PubMed  Google Scholar 

  18. Alberts B (2014) Essential cell biology. Garland Science, New York

    Google Scholar 

  19. Freshney RI, Capes-Davis A, Gregory C, Przyborski S (2016) Culture of animal cells : a manual of basic technique and specialized applications. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  20. Akagawa KS (2002) Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol 76(1):27–34

    Article  CAS  PubMed  Google Scholar 

  21. Lund PK, Joo GB, Westvik AB, Ovstebo R, Kierulf P (2000) Isolation of monocytes from whole blood by density gradient centrifugation and counter-current elutriation followed by cryopreservation: six years’ experience. Scand J Clin Lab Invest 60(5):357–365

    Article  CAS  PubMed  Google Scholar 

  22. Rios FJ, Touyz RM, Montezano AC (2017) Isolation and differentiation of murine macrophages. Methods Mol Biol 1527:297–309. https://doi.org/10.1007/978-1-4939-6625-7_23

    Article  CAS  PubMed  Google Scholar 

  23. Trapecar M, Goropevsek A, Gorenjak M, Gradisnik L, Slak Rupnik M (2014) A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 translocation. PLoS ONE 9(1):e86297. https://doi.org/10.1371/journal.pone.0086297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilhelm A, Jahns F, Bocker S, Mothes H, Greulich KO, Glei M (2012) Culturing explanted colon crypts highly improves viability of primary non-transformed human colon epithelial cells. Toxicol In Vitro 26(1):133–141. https://doi.org/10.1016/j.tiv.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  25. Gradisnik L, Trapecar M, Rupnik MS, Velnar T (2015) HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation. Wien Klin Wochenschr 127(Suppl 5):S204–209. https://doi.org/10.1007/s00508-015-0771-1

    Article  CAS  PubMed  Google Scholar 

  26. Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH (2017) Cell separation: potentials and pitfalls. Prep Biochem Biotechnol 47(1):38–51. https://doi.org/10.1080/10826068.2016.1163579

    Article  CAS  PubMed  Google Scholar 

  27. Treves AJ (1985) Human monocytes and macrophages: establishment and analysis of cloned populations and functional cell lines. Crit Rev Immunol 5(4):371–385

    CAS  PubMed  Google Scholar 

  28. de Almeida MC, Silva AC, Barral A, Netto MB (2000) A simple method for human peripheral blood monocyte isolation. Mem Inst Oswaldo Cruz 95(2):221–223. https://doi.org/10.1590/s0074-02762000000200014

    Article  PubMed  Google Scholar 

  29. Sayed IM, Seddik MI, Gaber MA, Saber SH, Mandour SA et al (2020) Replication of Hepatitis E virus (HEV) in primary human-derived monocytes and macrophages In Vitro. Vaccines (Basel) 8(2):239. https://doi.org/10.3390/vaccines8020239

    Article  Google Scholar 

  30. Nielsen CM, Andersen MN, Møller HJ (2020) Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 159(1):63–74. https://doi.org/10.1111/imm.13125

    Article  CAS  PubMed  Google Scholar 

  31. Busch CJ, Favret J, Geirsdóttir L, Molawi K, Sieweke MH, Busch CJ et al (2019) Isolation and long-term cultivation of mouse alveolar macrophages. Bio Protoc 9(14):3302. https://doi.org/10.21769/BioProtoc.3302

    Article  Google Scholar 

  32. Kjærgaard AG, Rødgaard-Hansen S, Dige A, Krog J, Møller HJ et al (2014) Monocyte expression and soluble levels of the haemoglobin receptor (CD163/sCD163) and the mannose receptor (MR/sMR) in septic and critically ill non-septic ICU patients. PLoS ONE 9(3):e92331. https://doi.org/10.1371/journal.pone.0092331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shirk EN, Kral BG, Gama L (2017) Toll-like receptor 2(bright) cells identify circulating monocytes in human and non-human primates. Cytometry A 91(4):364–371. https://doi.org/10.1002/cyto.a.23098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chometon TQ, de Silva SM, Sant Anna JC, Almeida MR, Gandini M et al (2020) A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS ONE 15(4):e0231132. https://doi.org/10.1371/journal.pone.0231132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E et al (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 7(5):e36814. https://doi.org/10.1371/journal.pone.0036814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692. https://doi.org/10.1146/annurev.immunol.021908.132557

    Article  CAS  PubMed  Google Scholar 

  37. Ghassabeh GH, De Baetselier P, Brys L, Noel W, Van Ginderachter JA et al (2006) Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood 108:575–583. https://doi.org/10.1182/blood-2005-04-1485

    Article  CAS  PubMed  Google Scholar 

  38. Ishida Y, Gao JL, Murphy PM (2008) Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 180:569–579. https://doi.org/10.4049/jimmunol.180.1.569

    Article  CAS  PubMed  Google Scholar 

  39. Chakarov S, Lim HJ, Tan L, Lim SY, See P et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. https://doi.org/10.1126/science.aau0964

    Article  PubMed  Google Scholar 

  40. Graziani-Bowering GM, Graham JM, Filion LG (1997) A quick, easy and inexpensive method for the isolation of human peripheral blood monocytes. J Immunol Methods 207(2):157–168. https://doi.org/10.1016/s0022-1759(97)00114-2

    Article  CAS  PubMed  Google Scholar 

  41. Pierzchalski A, Mittag A, Bocsi J, Tarnok A (2013) An innovative cascade system for simultaneous separation of multiple cell types. PLoS ONE 8(9):e74745. https://doi.org/10.1371/journal.pone.0074745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cassetta L, Noy R, Swierczak A, Sugano G, Smith H, Wiechmann L, Pollard JW (2016) Isolation of mouse and human tumor-associated macrophages. Adv Exp Med Biol 899:211–229. https://doi.org/10.1007/978-3-319-26666-4_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zembala M, Asherson GL (1970) The rapid purification of peritoneal exudate macrophages by ficoll (polysucrose) density gradient centrifugation. Immunology 19(4):677–681

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jepsen LV, Skottun T (1982) A rapid one-step method for the isolation of human granulocytes from whole blood. Scand J Clin Lab Invest 42(3):235–323

    Article  CAS  PubMed  Google Scholar 

  45. Meng F, Lowell CA (1997) Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185(9):1661–1670. https://doi.org/10.1084/jem.185.9.1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meital LT, Coward AS, Windsor MT, Bailey TG, Kuballa A et al (2019) A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J Immunol Methods 472:75–78. https://doi.org/10.1016/j.jim.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  47. Yang H, Hu C, Li F, Liang L, Liu L (2013) Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation. IUBMB Life 65(6):526–532. https://doi.org/10.1002/iub.1159

    Article  CAS  PubMed  Google Scholar 

  48. Foukas LC, Katsoulas HL, Paraskevopoulou N, Metheniti A, Lambropoulou M, Marmaras VJ (1998) Phagocytosis of Escherichia coli by insect hemocytes requires both activation of the ras/mitogen-activated protein kinase signal transduction pathway for attachment and β3 integrin for internalization. J Biol Chem 273(24):14813–14818. https://doi.org/10.1074/jbc.273.24.14813

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support for this project received from the Slovenian Research Agency (Grant Nos: J3-1762, L4-1843, P3-0036 and I0-0029).

Author information

Authors and Affiliations

Authors

Contributions

LG., MM., TV., and UM. designed the study. LG. performed the experiments. LG., MM., TV., and UM. wrote the manuscript and prepared the figures. All authors reviewed the manuscript and gave the final approval for its submission.

Corresponding authors

Correspondence to Tomaž Velnar or Uroš Maver.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Ethical approval

All experimental work was conducted only after suitable approvals by the Republic of Slovenia National Medical Ethics Committee were obtained (approval number 0120-674/2015-4) and obtained written consents of the included persons.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradišnik, L., Milojević, M., Velnar, T. et al. Isolation, characterisation and phagocytic function of human macrophages from human peripheral blood. Mol Biol Rep 47, 6929–6940 (2020). https://doi.org/10.1007/s11033-020-05751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05751-6

Keywords

Navigation