Skip to main content

Advertisement

Log in

Astragalin attenuates oxidative stress and acute inflammatory responses in carrageenan-induced paw edema in mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Astragalin is a flavonoid existed in several edible and medicinal plants and was recorded to have multiple biological and pharmacological significances. This work aimed to assess the possible protective effect of astragalin administration against oxidative tension, acute inflammation and histopathological deformations in a mouse paw edema model induced following intra sub-plantar injection of carrageenan. Thirty-six male Swiss mice were divided into four groups: control, carrageenan, astragalin (75 mg/kg) + carrageenan, and indomethacin (10 mg/kg) + carrageenan. Astragalin administration for five consecutive days to carrageenan injected mice showed a significant reduction in the development of paw in a time dependent effect, inhibited lipoperoxidation by-product, malondialdehyde and increased superoxide dismutase and catalase activities. Astragalin was found also to suppress the inflammatory signaling in the inflamed tissue as exhibited by the decreased myeloperoxidase activity along with the decreased protein and transcriptional level of pro-inflammatory cytokines including tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6. Moreover, inducible nitric oxide synthase and cyclooxygenase-2 expressions and their products (nitric oxide and prostaglandin E2) were downregulated. Additionally, astragalin decreased monocyte chemoattractant protein-1 and nuclear factor kappa B expression in the inflamed paw tissue. The recorded findings provide evidences for the potential application of astragalin as a plant-derived remedy for the treatment of acute inflammation due to its promising antioxidant and anti-inflammatory activities along with its ameliorative impact against the histopathological changes in the paw tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen L et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Article  PubMed  Google Scholar 

  2. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed AU (2011) An overview of inflammation: mechanism and consequences. Front Biol 6(4):274

    Article  CAS  Google Scholar 

  4. Laveti D et al (2013) Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy-Drug Targets. 12(5):349–361

    Article  CAS  PubMed  Google Scholar 

  5. Makni S et al (2019) Emex spinosa (L.) Campd ethyl acetate fractions effects on inflammation and oxidative stress markers in carrageenan induced paw oedema in mice. J Ethnopharmacol 234:216–224

    Article  CAS  PubMed  Google Scholar 

  6. Ou Z et al (2019) Anti-inflammatory effect and potential mechanism of betulinic acid on lambda-carrageenan-induced paw edema in mice. Biomed Pharmacother 118:109347

    Article  CAS  PubMed  Google Scholar 

  7. Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharmaceut Sci 16(5):821–847

    Google Scholar 

  8. Zhang H et al (2020) Diallyl Disulfide suppresses inflammatory and oxidative machineries following carrageenan injection-induced paw Edema in Mice. Mediat Inflamm 2020:8508906

    Google Scholar 

  9. Bao Y et al (2018) Therapeutic effects of Smilax glabra and Bolbostemma paniculatum on rheumatoid arthritis using a rat paw edema model. Biomed Pharmacother 108:309–315

    Article  CAS  PubMed  Google Scholar 

  10. Vinegar R et al. (1987) Pathway to carrageenan-induced inflammation in the hind limb of the rat. In: Federation proceedings.

  11. Abdelfattah MS et al (2020) Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of huntington's disease. Neurotox Res 37(1):77–92

    Article  CAS  PubMed  Google Scholar 

  12. Karna KK et al (2019) The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats. BMC Complement Altern Med 19(1):333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdelhafez OH et al (2018) Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats. PLoS ONE 13(8):e0202362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen M et al (2017) Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-small ka CyrillicB pathway. Oncotarget 8(16):26941–26958

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rey D et al (2019) Astragalin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium 80:56–62

    Article  CAS  PubMed  Google Scholar 

  16. Yan L, Zhou QH (2012) Study on neuroprotective effects of astragalan in rats with ischemic brain injury and its mechanisms. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28(4):373–377

    PubMed  Google Scholar 

  17. Qu D et al (2016) Cardioprotective effects of Astragalin against myocardial ischemia/reperfusion injury in isolated rat heart. Oxid Med Cell Longev 2016:8194690

    PubMed  Google Scholar 

  18. Jia Q et al (2019) Astragalin suppresses inflammatory responses and bone destruction in mice with collagen-induced arthritis and in human fibroblast-like Synoviocytes. Front Pharmacol 10:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li F et al (2013) Astragalin suppresses inflammatory responses via down-regulation of NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. Int Immunopharmacol 17(2):478–482

    Article  CAS  PubMed  Google Scholar 

  20. Soromou LW et al (2012) Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway. Biochem Biophys Res Commun 419(2):256–261

    Article  CAS  PubMed  Google Scholar 

  21. Ghafarzadeh S et al (2019) Crocin exerts improving effects on indomethacin-induced small intestinal ulcer by antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Vet Res Forum 10(4):277–284

    PubMed  PubMed Central  Google Scholar 

  22. Bradley PP et al (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209

    Article  CAS  PubMed  Google Scholar 

  23. Green LC et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  25. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  CAS  PubMed  Google Scholar 

  26. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  27. Zouari Bouassida K. et al. (2018) Effects of Juniperus phoenicea hydroalcoholic extract on inflammatory mediators and oxidative stress markers in carrageenan-induced paw oedema in mice. Biomed Res Int.

  28. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014.

  29. Sangeetha Lakshmi B et al (2018) Changes in the inflammatory and oxidative stress markers during a single hemodialysis session in patients with chronic kidney disease. Ren Fail 40(1):534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293

    Google Scholar 

  31. Yin M et al (2019) Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life Sci 232:116634

    Article  CAS  PubMed  Google Scholar 

  32. Cho I-H et al (2014) Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling. BMC Pulm Med 14(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Han X-X et al (2019) Protective effects of Astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed Pharmacother 110:561–570

    Article  CAS  PubMed  Google Scholar 

  34. Zheng D et al (2019) Astragalin reduces lipopolysaccharide-induced acute lung injury in rats via induction of heme oxygenase-1. Arch Pharmacal Res 42(8):704–711

    Article  CAS  Google Scholar 

  35. Almeer RS et al (2019) Anti-inflammatory and anti-hyperuricemic functions of two synthetic hybrid drugs with dual biological active sites. Int J Mol Sci 20(22):5635

    Article  CAS  PubMed Central  Google Scholar 

  36. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspect Biol 6(10):a016295

    Article  Google Scholar 

  37. Mateen S et al (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171

    Article  CAS  PubMed  Google Scholar 

  38. Alsousi A, Siddiqui S, Igwe O (2017) Cytokine-mediated differential regulation of cyclooxygenase-2, high mobility group box 1 protein and matrix metalloproteinase-9 expression in fibroblast-like synovial cells. J Clin Exp Pharmacol 7:4

    Google Scholar 

  39. Legler DF et al (2010) Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. Int J Biochem Cell Biol 42(2):198–201

    Article  CAS  PubMed  Google Scholar 

  40. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875

    Article  CAS  PubMed  Google Scholar 

  41. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soufli I et al (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 7(3):353–360

    Article  PubMed  PubMed Central  Google Scholar 

  43. Al-Megrin WA et al (2020) Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front Physiol 11:64

    Article  PubMed  PubMed Central  Google Scholar 

  44. Halici Z et al (2007) Amiodarone has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol 566(1–3):215–221

    Article  CAS  PubMed  Google Scholar 

  45. Mansouri MT et al (2015) A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J Pharmacol 47(3):292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu KK (1995) Inducible cyclooxygenase and nitric oxide synthase. In: Advances in pharmacology. Elsevier. pp 179–207.

  47. Davidge ST et al (1995) Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 77(2):274–283

    Article  CAS  PubMed  Google Scholar 

  48. Dkhil MA et al (2018) Ziziphus spina-christi (L.) leaf extract alleviates myocardial and renal dysfunction associated with sepsis in mice. Biomed Pharmacother 102:64–75

    Article  CAS  PubMed  Google Scholar 

  49. Van der Veen BS, de Winther MP, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11(11):2899–2937

    Article  PubMed  CAS  Google Scholar 

  50. Deshmane SL et al (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lansley SM, Cheah HM, Lee YC (2017) Role of MCP-1 in pleural effusion development in a carrageenan-induced murine model of pleurisy. Respirology 22(4):758–763

    Article  PubMed  Google Scholar 

  52. Al-Brakati et al (2019) The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and anti-apoptotic activities. Environ Sci Pollut Res Int 26(13):13539–13550

    Article  CAS  PubMed  Google Scholar 

  53. Vargas-Ruiz R et al (2020) Effect of phenolic compounds from Oenothera rosea on the kaolin-carrageenan induced arthritis model in mice. J Ethnopharmacol 253:112711

    Article  CAS  PubMed  Google Scholar 

  54. Pei H et al (2020) Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-kappaB pathway. J Agric Food Chem. 68(8):2406–2417

    Article  CAS  PubMed  Google Scholar 

  55. Ma Z et al (2015) Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. Int Immunopharmacol 25(1):83–87

    Article  CAS  PubMed  Google Scholar 

  56. Kim YH et al (2017) Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. J Agric Food Chem 65(4):836–845

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Alblihed.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical Approval

The experimental design and the employed animals were approved by the Research Ethics Committee, Taif University (Application No.: 41-00151) in accordance with the National Institutes of Health (NIH) Guidelines for the Care and Use of Laboratory Animals 8th edition.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alblihed, M.A. Astragalin attenuates oxidative stress and acute inflammatory responses in carrageenan-induced paw edema in mice. Mol Biol Rep 47, 6611–6620 (2020). https://doi.org/10.1007/s11033-020-05712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05712-z

Keywords

Navigation