Skip to main content
Log in

The role of hippocampal GABAA receptors on anxiolytic effects of Echium amoenum extract in a mice model of restraint stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Echium amoenum (EA), a popular medicinal plant in Persian medicine, has anxiolytic, antioxidant, sedative, and anti-inflammatory effects. This study examined whether GABA-ergic signaling is involved in the anxiolytic effects of EA in mice. Sixty BALB/c mice (25–30 g) were divided into six groups (n = 10) as follows: the (I) control group received 10 ml/kg normal saline (NS). In the stress groups, the animals underwent 14 consecutive days of restraint stress (RS), and received following treatments simultaneously; (II) RS + NS; (III) RS + Diaz (Diazepam); (IV) RS + EA; (V) RS + Flu (Flumazenil) + EA; (VI) RS + Flu + Diaz. Behavioral tests including the open field test (OFT) and elevated plus maze (EPM) were performed to evaluate anxiety-like behaviors and the effects of the regimens. The plasma level of corticosterone and the hippocampal protein expressions of IL-1β, TNF-α, CREB, and BDNF, as well as p-GABAA/GABAA ratio, were also assessed. The findings revealed that chronic administration of EA alone produced anxiolytic effects in both behavioral tests, while diazepam alone or in combination with Flu failed to decrease the anxiety-like behaviors. Furthermore, the p-GABAA/GABAA and p-CREB/CREB ratios, and protein levels of BDNF were significantly increased in the EA-received group. On the other hand, plasma corticosterone levels and the hippocampal IL-1β and TNF-α levels were significantly decreased by EA. However, pre-treatment with GABAA receptors (GABAA Rs) antagonist, Flu, reversed the anxiolytic and molecular effects of EA in the RS-subjected animals. Our findings confirmed that alternation of GABAAR is involved in the effects of EA against RS-induced anxiety-like behaviors, HPA axis activation, and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wiegner L, Hange D, Björkelund C, Ahlborg G (2015) Prevalence of perceived stress and associations to symptoms of exhaustion, depression and anxiety in a working age population seeking primary care—an observational study. BMC Fam Pract 16(1):38. https://doi.org/10.1186/s12875-015-0252-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim EJ, Pellman B, Kim JJ (2015) Stress effects on the hippocampus: a critical review. Learn Mem 22(9):411–416. https://doi.org/10.1101/lm.037291.114

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lussier AL, Caruncho HJ, Kalynchuk LE (2009) Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. Neurosci Lett 460(2):170–174. https://doi.org/10.1016/j.neulet.2009.05.050

    Article  CAS  PubMed  Google Scholar 

  4. Miranda DO, Anatriello E, Azevedo LR, Cordeiro JF, Peria FM, Flória-Santos M, Pereira-da-Silva G (2018) Elevated serum levels of proinflammatory cytokines potentially correlate with depression and anxiety in colorectal cancer patients in different stages of the antitumor therapy. Cytokine 104:72–77. https://doi.org/10.1016/j.cyto.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  5. Tang Z, Ye G, Chen X, Pan M, Fu J, Fu T, Liu Q, Gao Z, Baldwin DS, Hou R (2018) Peripheral proinflammatory cytokines in Chinese patients with generalised anxiety disorder. J Affect Disord 225:593–598. https://doi.org/10.1016/j.jad.2017.08.082

    Article  CAS  PubMed  Google Scholar 

  6. McEown K, Treit D (2013) Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory. Neuroscience 252:169–177. https://doi.org/10.1016/j.neuroscience.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  7. McKernan R, Rosahl T, Reynolds D, Sur C, Wafford K, Atack J, Farrar S, Myers J, Cook G, Ferris P (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA A receptor α 1 subtype. Nat Neurosci 3(6):587. https://doi.org/10.1038/75761

    Article  CAS  PubMed  Google Scholar 

  8. Verkuyl JM, Karst H, Joëls M (2005) GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress. Eur J Neurosci 21(1):113–121. https://doi.org/10.1111/j.1460-9568.2004.03846.x

    Article  PubMed  Google Scholar 

  9. Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15879–15893. https://doi.org/10.1523/JNEUROSCI.0530-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chanana P, Kumar A (2016) GABA-BZD receptor modulating mechanism of panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci 10:84. https://doi.org/10.3389/fnins.2016.00084

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175. https://doi.org/10.2147/NDT.S58841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atack J (2011) GABAA receptor subtype-selective modulators I α2/α3-selective agonists as non-sedating anxiolytics. Curr Top Med Chem 11(9):1176–1202. https://doi.org/10.2174/156802611795371350

    Article  CAS  PubMed  Google Scholar 

  13. Vinkers CH, Olivier B (2012) Mechanisms underlying tolerance after long-term benzodiazepine use: a future for subtype-selective GABAA receptor modulators? Adv Pharmacol Sci. https://doi.org/10.1155/2012/416864

    Article  PubMed  PubMed Central  Google Scholar 

  14. Porcher C, Medina I, Gaiarsa J-L (2018) Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains. Front Cell Neurosci 12:273. https://doi.org/10.3389/fncel.2018.00273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu G, Sun X, Yang Y, Du Y, Lin Y, Xiang J, Zhou N (2019) Reduction of BDNF results in GABAergic neuroplasticity dysfunction and contributes to late-life anxiety disorder. Behav Neurosci 133(2):212. https://doi.org/10.1037/bne0000301

    Article  CAS  PubMed  Google Scholar 

  16. Alboni S, Tascedda F, Corsini D, Benatti C, Caggia F, Capone G, Barden N, Blom JM, Brunello N (2011) Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice. Neuropharmacology 60(7–8):1337–1346. https://doi.org/10.1016/j.neuropharm.2011.01.050

    Article  CAS  PubMed  Google Scholar 

  17. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  Google Scholar 

  18. Carbone DL, Handa RJ (2013) Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor. Neuroscience 239:295–303. https://doi.org/10.1016/j.neuroscience.2012.10.073

    Article  CAS  PubMed  Google Scholar 

  19. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3):1768–1777. https://doi.org/10.1523/JNEUROSCI.15-03-01768.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lussier A, Romay-Tallón R, Caruncho H, Kalynchuk L (2013) Altered GABAergic and glutamatergic activity within the rat hippocampus and amygdala in rats subjected to repeated corticosterone administration but not restraint stress. Neuroscience 231:38–48. https://doi.org/10.1016/j.neuroscience.2012.11.037

    Article  CAS  PubMed  Google Scholar 

  21. Gholamzadeh S, Zare S, Ilkhanipoor M (2009) Evaluation of the anxiolytic effect of Echium amoenum petals extract, during chronic treatment in rat. Res Pharm Sci 2(2):91–95

    Google Scholar 

  22. Heidari MR, Azad EM, Mehrabani M (2006) Evaluation of the analgesic effect of Echium amoenum Fisch & CA Mey. extract in mice: possible mechanism involved. J Ethnopharmacol 103(3):345–349. https://doi.org/10.1016/j.jep.2005.08.027

    Article  PubMed  Google Scholar 

  23. Naseri N, Kalantar K, Amirghofran Z (2018) Anti-inflammatory activity of Echium amoenum extract on macrophages mediated by inhibition of inflammatory mediators and cytokines expression. Res Pharm Sci 13(1):73. https://doi.org/10.4103/1735-5362.220970

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nouri M, Farajdokht F, Kuchaksaray FR, Hamedyazdan S, Araj-Khodaei M (2019) Antidepressant and anxiolytic effect of echium amoenum in restraint stress model: the role of neuroinflammation in the prefrontal cortex and hippocampus. Iran Red Crescent Med J. https://doi.org/10.5812/ircmj.95438

    Article  Google Scholar 

  25. Nouri M, Farajdokht F, Torbati M, Kuchaksaray FR, Hamedyazdan S, Araj-khodaei M, Sadigh-Eteghad S (2019) A close look at echium amoenum processing, neuroactive components, and effects on neuropsychiatric disorders. Galen Med J 8:1559. https://doi.org/10.31661/gmj.v8i0.1559

    Article  Google Scholar 

  26. Ranjbar A, Khorami S, Safarabadi M, Shahmoradi A, Malekirad AA, Vakilian K, Mandegary A, Abdollahi M (2006) Antioxidant activity of Iranian Echium amoenum Fisch & CA Mey flower decoction in humans: a cross-sectional before/after clinical trial. Evid Based Complement Alternat Med 3(4):469–473. https://doi.org/10.1093/ecam/nel031

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gholamzadeh S, Zare S, Ilkhanipoor M (2008) Anxiolytic effect of Echium amoenum during different treatment courses. Res J Biol Sci 3(2):176–178

    Google Scholar 

  28. Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC (1997) Overview—flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res 22(4):419–425. https://doi.org/10.1023/a:1027303609517

    Article  CAS  PubMed  Google Scholar 

  29. Wasowski C, Marder M (2012) Flavonoids as GABAA receptor ligands: the whole story? J Exp Pharmacol 4:9–24. https://doi.org/10.2147/JEP.S23105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abed A, Minaiyan M, Ghannadi A, Mahzouni P, Babavalian MR (2012) Effect of Echium amoenum Fisch. et Mey a traditional Iranian herbal remedy in an experimental model of acute pancreatitis. ISRN Gastroenterol 2012:141548. https://doi.org/10.5402/2012/141548

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rabbani M, Sajjadi S, Khalili S (2011) A lack of tolerance to the anxiolytic action of Echium amoenum. Res Pharm Sci 6(2):101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16(4):383–406. https://doi.org/10.1038/mp.2010.120

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi AB, Torbati M, Farajdokht F, Sadigh-Eteghad S, Fazljou SMB, Vatandoust SM, Golzari SE, Mahmoudi J (2019) Sericin alleviates restraint stress induced depressive-and anxiety-like behaviors via modulation of oxidative stress, neuroinflammation and apoptosis in the prefrontal cortex and hippocampus. Brain Res 1715:47–56. https://doi.org/10.1016/j.brainres.2019.03.020

    Article  CAS  Google Scholar 

  34. Salehpour F, Farajdokht F, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR, Salimi MM, Karimi P, Rasta SH, Mahmoudi J (2019) Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 144:213–222. https://doi.org/10.1016/j.brainresbull.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  35. Shafaghi B, Naderi N, Tahmasb L, Kamalinejad M (2010) Anxiolytic effect of Echium amoenum L. in mice. Iran J Pharm Res 1:37–41

    Google Scholar 

  36. Nicholson MW, Sweeney A, Pekle E, Alam S, Ali AB, Duchen M, Jovanovic JN (2018) Diazepam-induced loss of inhibitory synapses mediated by PLCδ/Ca 2 +/calcineurin signalling downstream of GABAA receptors. Mol Psychiatry 23(9):1851. https://doi.org/10.1038/s41380-018-0100-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Divljaković J, Milić M, Timić T, Savić MM (2012) Tolerance liability of diazepam is dependent on the dose used for protracted treatment. Pharmacol Rep 64(5):1116–1125. https://doi.org/10.1016/s1734-1140(12)70908-8

    Article  PubMed  Google Scholar 

  38. Fernandes C, Arnot MI, Irvine EE, Bateson AN, Martin IL, File SE (1999) The effect of treatment regimen on the development of tolerance to the sedative and anxiolytic effects of diazepam. Psychopharmacology 145(3):251–259. https://doi.org/10.1007/s002130051056

    Article  CAS  PubMed  Google Scholar 

  39. Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE (2018) Structure of a human synaptic GABA A receptor. Nature 559(7712):67. https://doi.org/10.1038/s41586-018-0255-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463. https://doi.org/10.1038/nrn1683

    Article  CAS  PubMed  Google Scholar 

  41. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2001) Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology 26(5):443–459. https://doi.org/10.1016/s0306-4530(01)00004-x

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ (2015) Regulation of GABAARs by phosphorylation. Adv Pharmacol 72:97–146

    Article  CAS  Google Scholar 

  43. Gottmann K, Mittmann T, Lessmann V (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 199(3–4):203–234. https://doi.org/10.1007/s00221-009-1994-z

    Article  CAS  PubMed  Google Scholar 

  44. Bell-Horner CL, Dohi A, Nguyen Q, Dillon GH, Singh M (2006) ERK/MAPK pathway regulates GABAA receptors. J Neurobiol 66(13):1467–1474. https://doi.org/10.1002/neu.20327

    Article  CAS  PubMed  Google Scholar 

  45. Obrietan K, Gao X-B, van den Pol AN (2002) Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism—a positive feedback circuit in developing neurons. J Neurophysiol 88(2):1005–1015. https://doi.org/10.1152/jn.2002.88.2.1005

    Article  CAS  PubMed  Google Scholar 

  46. Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS ONE. https://doi.org/10.1371/journal.pone.0030481

    Article  PubMed  PubMed Central  Google Scholar 

  47. Maghsoudi N, Ghasemi R, Ghaempanah Z, Ardekani AM, Nooshinfar E, Tahzibi A (2014) Effect of chronic restraint stress on HPA axis activity and expression of BDNF and Trkb in the hippocampus of pregnant rats: possible contribution in depression during pregnancy and postpartum period. Basic Clin Neurosci 5(2):131–137

    PubMed  PubMed Central  Google Scholar 

  48. Ramezany Yasuj S, Nourhashemi M, Keshavarzi S, Motaghinejad M, Motevalian M (2019) Possible role of cyclic AMP response element binding/brain-derived neurotrophic factor signaling pathway in mediating the pharmacological effects of duloxetine against methamphetamine use-induced cognitive impairment and withdrawal-induced anxiety and depression in rats. Adv Biomed Res 8:11. https://doi.org/10.4103/abr.abr_34_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J Neurosci 25(12):3219–3228. https://doi.org/10.1523/JNEUROSCI.4486-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a grant from Neurosciences Research Center, Tabriz University of Medical Sciences (Grant Number: 62571) to SS-E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Sadigh-Eteghad.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All experiments in this study were approved by the Ethics Committee of Tabriz University of Medical Sciences (Approval No. IR.TBZMED.VCR.REC.1398.047) and followed the guidelines of the National Institute of Health (NIH; Publication No. 85-23, revised 1985).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajdokht, F., Vosoughi, A., Ziaee, M. et al. The role of hippocampal GABAA receptors on anxiolytic effects of Echium amoenum extract in a mice model of restraint stress. Mol Biol Rep 47, 6487–6496 (2020). https://doi.org/10.1007/s11033-020-05699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05699-7

Keywords

Navigation