An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance

Abstract

Accumulating evidence has reported that H19 long non-coding RNA (lncRNA) expression level is deregulated in human cancer. It has been also demonstrated that de-regulated levels of H19 could affect cancer biology by various mechanisms including microRNA (miRNA) production (like miR-675), miRNA sponging and epigenetic modifications. Furthermore, lncRNA could act as a potential diagnosis and prognosis biomarkers and also a candidate therapeutic approach for different human cancers. In this narrative review, we shed light on the molecular mechanism of H19 in cancer development and pathogenesis. Moreover, we discussed the expression pattern and diagnostic and therapeutic importance of H19 as a potential biomarker in a range of human malignancies from breast to osteosarcoma cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Liu Y, He A, Liu B, Huang Z, Mei H (2019) Potential role of lncRNA H19 as a cancer biomarker in human cancers detection and diagnosis: a pooled analysis based on 1585 subjects. Biomed Res Int. https://doi.org/10.1155/2019/9056458

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Palazzo AF, Lee ES (2015) Non-coding RNA: what is functional and what is junk? Front Genet 6:2

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhang S, Zhu L, Chen X, Zhang X, Chen E, Fang H, Feng Y, Li Y, Wang X, Jiang Z (2018) ctDNA assessment of EGFR mutation status in Chinese patients with advanced non-small cell lung cancer in real-world setting. J Thorac Dis 10(7):4169

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Liu C, Chen L, You Z, Wu Y, Wang C, Zhang G, Xu B, Chen M (2019) Association between lncRNA H19 polymorphisms and cancer susceptibility based on a meta-analysis from 25 studies. Gene 729:144317

    PubMed  Google Scholar 

  6. 6.

    Safari MR, Rezaei FM, Dehghan A, Noroozi R, Taheri M, Ghafouri-Fard S (2019) Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in Iranian population. Gene 701:121–124

    CAS  PubMed  Google Scholar 

  7. 7.

    Gabory A, Jammes H, Dandolo L (2010) The H19 locus: Role of an imprinted non-coding RNA in growth and development. BioEssays 32(6):473–480

    CAS  PubMed  Google Scholar 

  8. 8.

    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10(1):38

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ariel I, Ayesh S, Perlman E, Pizov G, Tanos V, Schneider T, Erdmann V, Podeh D, Komitowski D, Quasem A (1997) The product of the imprinted H19 gene is an oncofetal RNA. Mol Pathol 50(1):34

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Goshen R, Rachmilewitz J, Schneider T, de-Groot N, Ariel I, Palti Z, Hochberg AA (1993) The expression of the H-19 and IGF-2 genes during human embryogenesis and placental development. Mol Reprod Dev 34(4):374–379

    CAS  PubMed  Google Scholar 

  11. 11.

    Naimeh LG, Schutte BC, Hamilton WS, Tsalikian E (2001) Ontogeny of the H19 gene in sheep and effect of maternal fasting on its expression in the fetus. Endocr Res 27(4):417–431

    CAS  PubMed  Google Scholar 

  12. 12.

    Khatib H, Schutzkus V (2006) The expression profile of the H19 gene in cattle. Mamm Genome 17(9):991–996

    CAS  PubMed  Google Scholar 

  13. 13.

    Gao W-l, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li Y-x, Li D, Peng C, Wang Y-l (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9(7):1002–1010

    CAS  PubMed  Google Scholar 

  14. 14.

    Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28(5):491–501

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu J, Kahri A, Heikkilä P, Ilvesmäki V, Voutilainen R (1995) H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 80(2):492–496

    CAS  PubMed  Google Scholar 

  16. 16.

    DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A, Siegel RL (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69(6):438–451

    PubMed  Google Scholar 

  17. 17.

    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23(11):1885–1895

    CAS  PubMed  Google Scholar 

  18. 18.

    Adriaenssens E, Dumont L, Lottin S, Bolle D, Leprêtre A, Delobelle A, Bouali F, Dugimont T, Coll J, Curgy J-J (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol 153(5):1597–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, Chassat T, Bourette RP, Le Bourhis X, Adriaenssens E (2015) H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 6(30):29209

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, Richler C, Fellig Y, Sorin V, Hubert A, Hochberg A, Czerniak A (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochem Biophys Acta 1843(7):1414–1426. https://doi.org/10.1016/j.bbamcr.2014.03.023

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ge S, Wang D, Kong Q, Gao W, Sun J (2017) Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol Res 25(8):1363–1371

    PubMed  Google Scholar 

  23. 23.

    Li Z, Li Y, Li Y, Ren K, Li X, Han X, Wang J (2017) Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol 31(9):e21933

    Google Scholar 

  24. 24.

    Mo M, Zhou M, Wang L, Qi L, Zhou K, Liu L-F, Chen Z, Zu X-B (2015) CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells. PLoS ONE 10(3):e0119506

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang Q, Sun L, Yin L, Ming J, Zhang S, Luo W, Qiu X (2013) CCL19/CCR7 upregulates heparanase via specificity protein-1 (Sp1) to promote invasion of cell in lung cancer. Tumor Biol 34(5):2703–2708

    Google Scholar 

  26. 26.

    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    CAS  PubMed  Google Scholar 

  27. 27.

    Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22(3):431–441

    CAS  PubMed  Google Scholar 

  28. 28.

    Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Peng F, Li T-T, Wang K-L, Xiao G-Q, Wang J-H, Zhao H-D, Kang Z-J, Fan W-J, Zhu L-L, Li M (2018) H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis 8(1):e2569–e2569

    Google Scholar 

  30. 30.

    Zhou W, Ye X-L, Xu J, Cao M-G, Fang Z-Y, Li L-Y, Guan G-H, Liu Q, Qian Y-H, Xie D (2017) The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal 10(483):eaak9557

    PubMed  Google Scholar 

  31. 31.

    Wang Z, Humphries B, Xiao H, Jiang Y, Yang C (2014) MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation. J Biol Chem 289(26):18373–18386

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chang S-H, Lu Y-C, Li X, Hsieh W-Y, Xiong Y, Ghosh M, Evans T, Elemento O, Hla T (2013) Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis. J Biol Chem 288(7):4908–4921

    CAS  PubMed  Google Scholar 

  33. 33.

    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    CAS  PubMed  Google Scholar 

  34. 34.

    Si H, Chen P, Li H, Wang X (2019) Long non-coding RNA H19 regulates cell growth and metastasis via miR-138 in breast cancer. Am J Transl Res 11(5):3213

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Si X, Zang R, Zhang E, Liu Y, Shi X, Zhang E, Shao L, Li A, Yang N, Han X (2016) LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7(49):81452

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221

    CAS  PubMed  Google Scholar 

  37. 37.

    Zhuo C, Jiang R, Lin X, Shao M (2017) LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8(1):1429

    PubMed  Google Scholar 

  38. 38.

    Collette J, Le Bourhis X, Adriaenssens E (2017) Regulation of human breast cancer by the long non-coding RNA H19. Int J Mol Sci 18(11):2319

    PubMed Central  Google Scholar 

  39. 39.

    Berteaux N, Aptel N, Cathala G, Genton C, Coll J, Daccache A, Spruyt N, Hondermarck H, Dugimont T, Curgy J-J (2008) A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol 28(22):6731–6745

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Vennin C, Spruyt N, Robin Y-M, Chassat T, Le Bourhis X, Adriaenssens E (2017) The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett 385:198–206

    CAS  PubMed  Google Scholar 

  41. 41.

    Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J, Hondermarck H, Curgy J-J, Dugimont T, Adriaenssens E (2005) H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 280(33):29625–29636

    CAS  PubMed  Google Scholar 

  42. 42.

    Sheldon LA (2017) Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein. Cell Cycle 16(21):2058–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Elbadawy M, Usui T, Yamawaki H, Sasaki K (2019) Emerging roles of C-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer. Int J Mol Sci 20(9):2340

    CAS  PubMed Central  Google Scholar 

  44. 44.

    Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS, Penn LZ (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66(10):5330–5337

    CAS  PubMed  Google Scholar 

  45. 45.

    Wang X, Pei X, Guo G, Qian X, Dou D, Zhang Z, Xu X, Duan X (2020) Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol. https://doi.org/10.1002/jcp.29585

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Özgür E, Ferhatoğlu F, Şen F, Saip P, Gezer U (2020) Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark 27(1):11–17

    PubMed  Google Scholar 

  47. 47.

    Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, Chen Y, Ying X, Chen C, Ye C (2019) The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol 12(1):81

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Thrift AP, El-Serag HB (2019) Burden of Gastric Cancer. Clin Gastroenterol Hepatol. https://doi.org/10.1016/j.cgh.2019.07.045

    Article  PubMed  Google Scholar 

  49. 49.

    Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, Xia T, Xiao B, Xi Y, Guo J (2013) Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med 11:225. https://doi.org/10.1186/1479-5876-11-225

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhang EB, Han L, Yin DD, Kong R, De W, Chen J (2014) c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol (Northwood, London, England) 31(5):914. https://doi.org/10.1007/s12032-014-0914-7

    CAS  Article  Google Scholar 

  51. 51.

    Chen JS, Wang YF, Zhang XQ, Lv JM, Li Y, Liu XX, Xu TP (2016) H19 serves as a diagnostic biomarker and up-regulation of H19 expression contributes to poor prognosis in patients with gastric cancer. Neoplasma 63(2):223–230. https://doi.org/10.4149/207_150821n454

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ghaedi H, Mozaffari MAN, Salehi Z, Ghasemi H, Zadian SS, Alipoor S, Hadianpour S, Alipoor B (2019) Co-expression profiling of plasma miRNAs and long noncoding RNAs in gastric cancer patients. Gene 687:135–142

    CAS  PubMed  Google Scholar 

  53. 53.

    Mohamed WA, Schaalan MF, Ramadan B (2019) The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem 120(8):13464–13477

    CAS  PubMed  Google Scholar 

  54. 54.

    Zhang Y, Yan J, Li C, Wang X, Dong Y, Shen X, Zhang X (2019) LncRNA H19 induced by helicobacter pylori infection promotes gastric cancer cell growth via enhancing NF-κB-induced inflammation. J Inflamm 16(1):1–8

    Google Scholar 

  55. 55.

    Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279(17):3159–3165. https://doi.org/10.1111/j.1742-4658.2012.08694.x

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Amente S, Lania L, Majello B (2011) Epigenetic reprogramming of Myc target genes. Am J Cancer Res 1(3):413

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ghafouri-Fard S, Taheri M (2019) Colon cancer-associated transcripts 1 and 2: roles and functions in human cancers. J Cell Physiol 234(9):14581–14600

    CAS  Google Scholar 

  58. 58.

    Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, Fang G (2013) Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol 139(3):437–445

    CAS  PubMed  Google Scholar 

  59. 59.

    Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y, Fang G (2014) Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J 281(3):802–813

    CAS  PubMed  Google Scholar 

  60. 60.

    Zhuang M, Gao W, Xu J, Wang P, Shu Y (2014) The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun 448(3):315–322

    CAS  PubMed  Google Scholar 

  61. 61.

    Chuang LS, Ito K, Ito Y (2013) RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 132(6):1260–1271. https://doi.org/10.1002/ijc.27964

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Matsuoka T, Yashiro M (2014) The role of PI3K/Akt/mTOR signaling in gastric carcinoma. Cancers 6(3):1441–1463. https://doi.org/10.3390/cancers6031441

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G, Kaindl U, Kauer M, Dworzak MN, Stoiber D, Haas OA, Panzer-Grumayer R (2012) Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia 26(5):927–933. https://doi.org/10.1038/leu.2011.322

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Edwards H, Xie C, LaFiura KM, Dombkowski AA, Buck SA, Boerner JL, Taub JW, Matherly LH, Ge Y (2009) RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 114(13):2744–2752. https://doi.org/10.1182/blood-2008-09-179812

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Liu G, Xiang T, Wu QF, Wang WX (2016) Long noncoding RNA H19-derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells. Oncol Res 23(3):99–107. https://doi.org/10.3727/096504015x14496932933575

    Article  PubMed  Google Scholar 

  66. 66.

    Kobuke K, Oki K, Gomez-Sanchez CE, Gomez-Sanchez EP, Ohno H, Itcho K, Yoshii Y, Yoneda M, Hattori N (2018) Calneuron 1 increased Ca(2+) in the endoplasmic reticulum and aldosterone production in aldosterone-producing adenoma. Hypertension (Dallas, Tex: 1979) 71(1):125–133. https://doi.org/10.1161/hypertensionaha.117.10205

    CAS  Article  Google Scholar 

  67. 67.

    Li H, Yu B, Li J, Su L, Yan M, Zhu Z, Liu B (2014) Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5(8):2318–2329. https://doi.org/10.18632/oncotarget.1913

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Qi D-L, Ohhira T, Fujisaki C, Inoue T, Ohta T, Osaki M, Ohshiro E, Seko T, Aoki S, Oshimura M (2011) Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol Cell Biol 31(8):1624–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Liu L, Tian Y-C, Mao G, Zhang Y-G, Han L (2019) MiR-675 is frequently overexpressed in gastric cancer and enhances cell proliferation and invasion via targeting a potent anti-tumor gene PITX1. Cell Signal 62:109352

    CAS  PubMed  Google Scholar 

  70. 70.

    Yan J, Zhang Y, She Q, Li X, Peng L, Wang X, Liu S, Shen X, Zhang W, Dong Y, Lu J, Zhang G (2017) Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/caspase 8/caspase 3 signaling pathway. Cell Physiol Biochem 42(6):2364–2376. https://doi.org/10.1159/000480028

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Pera EM, Kim JI, Martinez SL, Brechner M, Li SY, Wessely O, De Robertis EM (2002) Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer. Mech Dev 116(1–2):169–172. https://doi.org/10.1016/s0925-4773(02)00123-5

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  73. 73.

    Lander E (2014) Comprehensive molecular characterization of human colon and rectal cancer.  487(7407)

  74. 74.

    Chen C, Tang X, Liu Y, Zhu J, Liu J (2019) Induction/reversal of drug resistance in gastric cancer by non-coding RNAs (review). Int J Oncol 54(5):1511–1524. https://doi.org/10.3892/ijo.2019.4751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Siegel RL, Torre LA, Soerjomataram I, Hayes RB, Bray F, Weber TK, Jemal A (2019) Global patterns and trends in colorectal cancer incidence in young adults. Gut 68(12):2179–2185

    PubMed  Google Scholar 

  76. 76.

    Ismail DM, Shaker OG, Kandeil MA, Hussein RM (2019) Gene expression of the circulating long noncoding RNA H19 and HOTAIR in Egyptian colorectal cancer patients. Genet Test Mol Biomark 23(9):671–680

    CAS  Google Scholar 

  77. 77.

    Sun F, Liang W, Qian J (2019) The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol Med Rep 20(4):3583–3596

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zhao M, Wang H, Chen J, Xi Y, Wang F, Huo C, Li W, Chu Y, Xu P, Huang Q (2019) Expression of long non-coding RNA H19 in colorectal cancer patients with type 2 diabetes. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2019.1628068

    Article  PubMed  Google Scholar 

  79. 79.

    Li S, Hua Y, Jin J, Wang H, Du M, Zhu L, Chu H, Zhang Z, Wang M (2016) Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget 7(18):25470–25477. https://doi.org/10.18632/oncotarget.8330

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Zhong M-E, Chen Y, Zhang G, Xu L, Ge W, Wu B (2019) LncRNA H19 regulates PI3K–Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: integrative analysis of dysregulated ncRNA-associated ceRNA network. Cancer Cell Int 19(1):148

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31(3):350–358. https://doi.org/10.1093/carcin/bgp181

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DC, Zhang JF, Waye MM (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6(26):22513–22525. https://doi.org/10.18632/oncotarget.4154

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8(2):251–262. https://doi.org/10.1016/s1097-2765(01)00329-x

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Linder P, Jankowsky E (2011) From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12(8):505–516. https://doi.org/10.1038/nrm3154

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36(1):19–29. https://doi.org/10.1016/j.tibs.2010.07.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Le Hir H, Andersen GR (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol 18(1):112–119. https://doi.org/10.1016/j.sbi.2007.11.002

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Lv G, Xu C, Tao J, Ma N (2016) Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 7(16):22159–22173. https://doi.org/10.18632/oncotarget.8063

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kessenbrock K, Frohlich L, Sixt M, Lammermann T, Pfister H, Bateman A, Belaaouaj A, Ring J, Ollert M, Fassler R, Jenne DE (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Investig 118(7):2438–2447. https://doi.org/10.1172/jci34694

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    He Z, Ismail A, Kriazhev L, Sadvakassova G, Bateman A (2002) Progranulin (PC-cell-derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res 62(19):5590–5596

    CAS  PubMed  Google Scholar 

  90. 90.

    Suzuki M, Yoshida S, Nishihara M, Takahashi M (1998) Identification of a sex steroid-inducible gene in the neonatal rat hypothalamus. Neurosci Lett 242(3):127–130. https://doi.org/10.1016/s0304-3940(98)00008-1

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L (2017) Progranulin and its biological effects in cancer. Med Oncol (Northwood, London, England) 34(12):194. https://doi.org/10.1007/s12032-017-1054-7

    CAS  Article  Google Scholar 

  92. 92.

    Jiao J, Herl LD, Farese RV, Gao FB (2010) MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE 5(5):e10551. https://doi.org/10.1371/journal.pone.0010551

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ding D, Li C, Zhao T, Li D, Yang L, Zhang B (2018) LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on Wnt signaling. Mol Cells 41(5):423–435. https://doi.org/10.14348/molcells.2018.2258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX (2016) The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett 12(5):3045–3050. https://doi.org/10.3892/ol.2016.5110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Yang W, Redpath RE, Zhang C, Ning N (2018) Long non-coding RNA H19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol Lett 16(3):3365–3372. https://doi.org/10.3892/ol.2018.9052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, Garcia PD, Randazzo FM, Escobedo J, Fantl WJ, Williams LT (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA 98(26):14973–14978. https://doi.org/10.1073/pnas.261574498

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science (New York, NY) 281(5382):1509–1512. https://doi.org/10.1126/science.281.5382.1509

    CAS  Article  Google Scholar 

  98. 98.

    Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193. https://doi.org/10.1128/mcb.22.4.1184-1193.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426. https://doi.org/10.1038/18884

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Willert J, Epping M, Pollack JR, Brown PO, Nusse R (2002) A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2:8. https://doi.org/10.1186/1471-213x-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang C, Zhang Q (2012) MicroRNA-200a suppresses the Wnt/beta-catenin signaling pathway by interacting with beta-catenin. Int J Oncol 40(4):1162–1170. https://doi.org/10.3892/ijo.2011.1322

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Yang W, Ning N, Jin X (2017) The lncRNA H19 promotes cell proliferation by competitively binding to miR-200a and derepressing beta-catenin expression in colorectal cancer. Biomed Res Int 2017:2767484. https://doi.org/10.1155/2017/2767484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M, Munoz A (2001) Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154(2):369–387. https://doi.org/10.1083/jcb.200102028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Saieva L, Barreca MM, Zichittella C, Prado MG, Tripodi M, Alessandro R, Conigliaro A (2020) Hypoxia-induced miR-675-5p supports β-catenin nuclear localization by regulating GSK3-β activity in colorectal cancer cell lines. Int J Mol Sci 21(11):3832

    PubMed Central  Google Scholar 

  105. 105.

    Sugiyama T, Frazier DP, Taneja P, Morgan RL, Willingham MC, Inoue K (2008) Role of DMP1 and its future in lung cancer diagnostics. Expert Rev Mol Diagn 8(4):435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Yang X, Lou Y, Wang M, Liu C, Liu Y, Huang W (2019) miR-675 promotes colorectal cancer cell growth dependent on tumor suppressor DMTF1. Mol Med Rep 19(3):1481–1490

    CAS  PubMed  Google Scholar 

  107. 107.

    Wu KF, Liang WC, Feng L, Pang JX, Waye MM, Zhang JF, Fu WM (2017) H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/beta-catenin pathway. Exp Cell Res 350(2):312–317. https://doi.org/10.1016/j.yexcr.2016.12.003

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Wang M, Han D, Yuan Z, Hu H, Zhao Z, Yang R, Jin Y, Zou C, Chen Y, Wang G, Gao X, Wang X (2018) Long non-coding RNA H19 confers 5-Fu resistance in colorectal cancer by promoting SIRT1-mediated autophagy. Cell Death Dis 9(12):1149. https://doi.org/10.1038/s41419-018-1187-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Hu Q, Wang YB, Zeng P, Yan GQ, Xin L, Hu XY (2016) Expression of long non-coding RNA (lncRNA) H19 in immunodeficient mice induced with human colon cancer cells. Eur Rev Med Pharmacol Sci 20(23):4880–4884

    CAS  PubMed  Google Scholar 

  110. 110.

    Yang Q, Wang X, Tang C, Chen X, He J (2017) H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1. Int J Oncol 50(5):1801–1809. https://doi.org/10.3892/ijo.2017.3941

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–503. https://doi.org/10.1038/ncpneuro0289

    Article  PubMed  Google Scholar 

  112. 112.

    Killen AC, Barber M, Paulin JJW, Ranscht B, Parnavelas JG, Andrews WD (2017) Protective role of cadherin 13 in interneuron development. Brain Struct Funct 222(8):3567–3585. https://doi.org/10.1007/s00429-017-1418-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS ONE 9(1):e86295. https://doi.org/10.1371/journal.pone.0086295

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Li C, Lei B, Huang S, Zheng M, Liu Z, Li Z, Deng Y (2015) H19 derived microRNA-675 regulates cell proliferation and migration through CDK6 in glioma. Am J Transl Res 7(10):1747–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Pan JX, Chen TN, Ma K, Wang S, Yang CY, Cui GY (2020) A negative feedback loop of H19/miR-675/VDR mediates therapeutic effect of cucurmin in the treatment of glioma. J Cell Physiol 235(3):2171–2182

    CAS  PubMed  Google Scholar 

  116. 116.

    Wang L-H, Wu C-F, Rajasekaran N, Shin YK (2018) Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem 51(6):2647–2693

    CAS  PubMed  Google Scholar 

  117. 117.

    Zheng Y, Lu X, Xu L, Chen Z, Li Q, Yuan J (2017) MicroRNA-675 promotes glioma cell proliferation and motility by negatively regulating retinoblastoma 1. Hum Pathol 69:63–71

    CAS  PubMed  Google Scholar 

  118. 118.

    Jensen RL (2006) Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures. Neurosurg Focus 20(4):E24

    PubMed  Google Scholar 

  119. 119.

    Dico AL, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, Mancone C, Tripodi M, Ottobrini L, Alessandro R (2016) miR675-5p acts on HIF-1α to sustain hypoxic responses: a new therapeutic strategy for glioma. Theranostics 6(8):1105

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Li W, Jiang P, Sun X, Xu S, Ma X, Zhan R (2016) Suppressing H19 modulates tumorigenicity and stemness in U251 and U87MG glioma cells. Cell Mol Neurobiol 36(8):1219–1227. https://doi.org/10.1007/s10571-015-0320-5

    Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Guan N, Wang R, Guo WS, Lai YJ, Zhang YD, Cheng YY (2019) Long non-coding RNA H19 regulates the development of gliomas through the Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 23(10):4243–4253. https://doi.org/10.26355/eurrev_201905_17929

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S (2017) Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2: MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res 36(1):100. https://doi.org/10.1186/s13046-017-0567-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Tang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB (2018) Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (New York) 43(1):13–25. https://doi.org/10.1007/s00261-017-1209-1

    Article  Google Scholar 

  124. 124.

    Wu E-R, Chou Y-E, Liu Y-F, Hsueh K-C, Lee H-L, Yang S-F, Su S-C (2019) Association of lncrna h19 gene polymorphisms with the occurrence of hepatocellular carcinoma. Genes 10(7):506

    CAS  PubMed Central  Google Scholar 

  125. 125.

    Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, Bloom G, Fuchs BC, Yeatman T, Shibata D (2013) miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Ann Surg Oncol 20(Suppl 3):S625–635. https://doi.org/10.1245/s10434-013-3106-3

    Article  PubMed  Google Scholar 

  126. 126.

    Niu ZS, Niu XJ, Wang WH (2017) Long non-coding RNAs in hepatocellular carcinoma: potential roles and clinical implications. World J Gastroenterol 23(32):5860–5874. https://doi.org/10.3748/wjg.v23.i32.5860

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2(9):e845. https://doi.org/10.1371/journal.pone.0000845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Cui C, Li Z, Wu D (2019) The long non-coding RNA H19 induces hypoxia/reoxygenation injury by up-regulating autophagy in the hepatoma carcinoma cells. Biol Res 52(1):32. https://doi.org/10.1186/s40659-019-0239-2

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Lv J, Yu YQ, Li SQ, Luo L, Wang Q (2014) Aflatoxin B1 promotes cell growth and invasion in hepatocellular carcinoma HepG2 cells through H19 and E2F1. Asian Pac J Cancer Prev 15(6):2565–2570. https://doi.org/10.7314/apjcp.2014.15.6.2565

    Article  PubMed  Google Scholar 

  130. 130.

    Zhou Y, Fan RG, Qin CL, Jia J, Wu XD, Zha WZ (2019) LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics 111(6):1862–1872. https://doi.org/10.1016/j.ygeno.2018.12.009

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Wei LQ, Li L, Lu C, Liu J, Chen Y, Wu H (2019) Involvement of H19/miR-326 axis in hepatocellular carcinoma development through modulating TWIST1. J Cell Physiol 234(4):5153–5162

    CAS  PubMed  Google Scholar 

  132. 132.

    Lee K-W, Yeo S-Y, Sung CO, Kim S-H (2015) Twist1 is a key regulator of cancer-associated fibroblasts. Can Res 75(1):73–85

    CAS  Google Scholar 

  133. 133.

    Li L, Han T, Liu K, Lei C, Wang Z, Shi G (2019) LncRNA H19 promotes the development of hepatitis B related hepatocellular carcinoma through regulating microRNA-22 via EMT pathway. Eur Rev Med Pharmacol Sci 23(12):5392–5401

    CAS  PubMed  Google Scholar 

  134. 134.

    Ye Y, Guo J, Xiao P, Ning J, Zhang R, Liu P, Yu W, Xu L, Zhao Y, Yu J (2020) Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett 469:310–322

    CAS  PubMed  Google Scholar 

  135. 135.

    Lv J, Ma L, Chen XL, Huang XH, Wang Q (2014) Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3beta/Cdc25A signaling pathway. J Huazhong Univ Sci Technol Med Sci 34(3):363–369. https://doi.org/10.1007/s11596-014-1284-2

    CAS  Article  PubMed  Google Scholar 

  136. 136.

    Yu YQ, Weng J, Li SQ, Li B, Lv J (2016) MiR-675 promotes the growth of hepatocellular carcinoma cells through the Cdc25A pathway. Asian Pac J Cancer Prev 17(8):3881–3885

    PubMed  Google Scholar 

  137. 137.

    Li H, Li J, Jia S, Wu M, An J, Zheng Q, Zhang W, Lu D (2015) miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget 6(31):31958

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    O'Brien SJ, Carter JV, Burton JF, Oxford BG, Schmidt MN, Hallion JC, Galandiuk S (2018) The role of the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a systematic review. Int J Cancer 142(12):2501–2511. https://doi.org/10.1002/ijc.31282

    CAS  Article  PubMed  Google Scholar 

  139. 139.

    Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, Xu D, Bi HS, Wang F, Sun SH (2013) Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34(3):577–586. https://doi.org/10.1093/carcin/bgs381

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Tan TZ, Rouanne M, Tan KT, Huang RY-J, Thiery J-P (2019) Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol 75(3):423–432

    CAS  PubMed  Google Scholar 

  141. 141.

    Ariel I, Ayesh S (2000) The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol 53:320–323. https://doi.org/10.1136/mp.53.6.320

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Cooper MJ, Fischer M, Komitowski D, Shevelev A, Schulze E, Ariel I, Tykocinski ML, Miron S, Ilan J, de Groot N, Hochberg A (1996) Developmentally imprinted genes as markers for bladder tumor progression. J Urol 155(6):2120–2127

    CAS  PubMed  Google Scholar 

  143. 143.

    Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W (2018) Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res 6:10. https://doi.org/10.1186/s40364-018-0122-2

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J 280(7):1709–1716

    CAS  PubMed  Google Scholar 

  145. 145.

    Ke J, Wu R, Chen Y, Abba ML (2018) Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 10(12):3887–3910

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z (2016) H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol 37(1):263–270. https://doi.org/10.1007/s13277-015-3779-2

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Li S, Yu Z, Chen SS, Li F, Lei CY, Chen XX, Bao JM, Luo Y, Lin GZ, Pang SY, Tan WL (2015) The YAP1 oncogene contributes to bladder cancer cell proliferation and migration by regulating the H19 long noncoding RNA. Urol Oncol 33(10):427.e421–410. https://doi.org/10.1016/j.urolonc.2015.06.003

    CAS  Article  Google Scholar 

  148. 148.

    Zhang L, Song X, Li X, Wu C, Jiang J (2018) Yes-associated protein 1 as a novel prognostic biomarker for gastrointestinal cancer: a meta-analysis. Biomed Res Int 2018:4039173. https://doi.org/10.1155/2018/4039173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Medina-Rico M, Ramos HL, Lobo M, Romo J, Prada JG (2018) Epidemiology of renal cancer in developing countries: review of the literature. Can Urol Assoc J 12(3):E154–E162. https://doi.org/10.5489/cuaj.4464

    Article  PubMed  Google Scholar 

  150. 150.

    Frevel MA, Sowerby SJ, Petersen GB, Reeve AE (1999) Methylation sequencing analysis refines the region of H19 epimutation in Wilms tumor. J Biol Chem 274(41):29331–29340. https://doi.org/10.1074/jbc.274.41.29331

    CAS  Article  PubMed  Google Scholar 

  151. 151.

    Zhou S, Wang J, Zhang Z (2014) An emerging understanding of long noncoding RNAs in kidney cancer. J Cancer Res Clin Oncol 140(12):1989–1995. https://doi.org/10.1007/s00432-014-1699-y

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Yang F, Shao Y, Yang F, Liu M, Huang J, Zhu K, Guo C, Luo J, Li W, Yang B, Shi J, Zheng J (2013) Valproic acid upregulates NKG2D ligand expression and enhances susceptibility of human renal carcinoma cells to NK cell-mediated cytotoxicity. Arch Med Sci 9(2):323–331. https://doi.org/10.5114/aoms.2013.34413

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Wang L, Cai Y, Zhao X, Jia X, Zhang J, Liu J, Zhen H, Wang T, Tang X, Liu Y, Wang J (2015) Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma 62(3):412–418. https://doi.org/10.4149/neo_2015_049

    CAS  Article  PubMed  Google Scholar 

  154. 154.

    Tian X, Chen Y, Hu W, Wu M (2011) E2F1 inhibits MDM2 expression in a p53-dependent manner. Cell Signal 23(1):193–200. https://doi.org/10.1016/j.cellsig.2010.09.003

    CAS  Article  PubMed  Google Scholar 

  155. 155.

    He H, Wang N, Yi X, Tang C, Wang D (2017) Long non-coding RNA H19 regulates E2F1 expression by competitively sponging endogenous miR-29a-3p in clear cell renal cell carcinoma. Cell Biosci 7:65. https://doi.org/10.1186/s13578-017-0193-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Cao M, Chen W (2019) Epidemiology of lung cancer in China. Thorac Cancer 10(1):3–7. https://doi.org/10.1111/1759-7714.12916

    Article  PubMed  Google Scholar 

  157. 157.

    Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol 7:193. https://doi.org/10.3389/fonc.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Matouk IJ, Halle D, Gilon M, Hochberg A (2015) The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in lung cancer. J Transl Med 13:113. https://doi.org/10.1186/s12967-015-0467-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL (2010) Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem 285(32):24381–24387. https://doi.org/10.1074/jbc.M110.111328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Liao S, Yu C, Liu H, Zhang C, Li Y, Zhong X (2019) Long non-coding RNA H19 promotes the proliferation and invasion of lung cancer cells and regulates the expression of E-cadherin, N-cadherin, and vimentin. OncoTargets Ther 12:4099

    CAS  Google Scholar 

  161. 161.

    Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T, Takahashi T (1995) Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10(6):1193–1198

    CAS  PubMed  Google Scholar 

  162. 162.

    Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J (2009) MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS ONE 4(8):e6677. https://doi.org/10.1371/journal.pone.0006677

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Cui J, Mo J, Luo M, Yu Q, Zhou S, Li T, Zhang Y, Luo W (2015) c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer. Int J Clin Exp Pathol 8(10):12400

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Zhang Q, Li X, Li X, Li X, Chen Z (2018) LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells. J Cell Biochem 119(6):4447–4457. https://doi.org/10.1002/jcb.26537

    CAS  Article  PubMed  Google Scholar 

  165. 165.

    Wang M, Li G, Yang Z, Wang L, Zhang L, Wang T, Zhang Y, Zhang S, Han Y, Jia L (2017) Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget 8(5):8083

    PubMed  Google Scholar 

  166. 166.

    Zheng ZH, Wu DM, Fan SH, Zhang ZF, Chen GQ, Lu J (2019) Upregulation of miR-675-5p induced by lncRNA H19 was associated with tumor progression and development by targeting tumor suppressor p53 in non-small cell lung cancer. J Cell Biochem 120(11):18724–18735

    CAS  PubMed  Google Scholar 

  167. 167.

    Feng Y, Yang C, Hu D, Wang X, Liu X (2017) miR-675 promotes disease progression of non-small cell lung cancer via activating NF-κB signaling pathway. Cell Mol Biol (Noisy-le-Grand, France) 63(5):7–10. https://doi.org/10.14715/cmb/2017.63.5.2

    CAS  Article  Google Scholar 

  168. 168.

    He D, Wang J, Zhang C, Shan B, Deng X, Li B, Zhou Y, Chen W, Hong J, Gao Y, Chen Z, Duan C (2015) Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol Cancer 14:73. https://doi.org/10.1186/s12943-015-0342-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Xu Y, Lin J, Jin Y, Chen M, Zheng H, Feng J (2019) The miRNA hsa-miR-6515-3p potentially contributes to lncRNA H19-mediated-lung cancer metastasis. J Cell Biochem. https://doi.org/10.1002/jcb.29006

    Article  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Huang Z, Ma Y, Zhang P, Si J, Xiong Y, Yang Y (2020) Long non-coding RNA H19 confers resistance to gefitinib via miR-148b-3p/DDAH1 axis in lung adenocarcinoma. Anticancer Drugs 31(1):44–54

    CAS  PubMed  Google Scholar 

  171. 171.

    Ribeiro IP, de Melo JB, Carreira IM (2019) Head and neck cancer: searching for genomic and epigenetic biomarkers in body fluids—the state of art. Mol Cytogenet 12:33. https://doi.org/10.1186/s13039-019-0447-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    El-Naggar AK, Lai S, Tucker SA, Clayman GL, Goepfert H, Hong WK, Huff V (1999) Frequent loss of imprinting at the IGF2 and H19 genes in head and neck squamous carcinoma. Oncogene 18(50):7063–7069. https://doi.org/10.1038/sj.onc.1203192

    CAS  Article  PubMed  Google Scholar 

  173. 173.

    Esteves LI, Javaroni AC, Nishimoto IN, Magrin J, Squire JA, Kowalski LP, Rainho CA, Rogatto SR (2005) DNA methylation in the CTCF-binding site I and the expression pattern of the H19 gene: does positive expression predict poor prognosis in early stage head and neck carcinomas? Mol Carcinog 44(2):102–110. https://doi.org/10.1002/mc.20126

    CAS  Article  PubMed  Google Scholar 

  174. 174.

    Mirisola V, Mora R, Esposito AI, Guastini L, Tabacchiera F, Paleari L, Amaro A, Angelini G, Dellepiane M, Pfeffer U, Salami A (2011) A prognostic multigene classifier for squamous cell carcinomas of the larynx. Cancer Lett 307(1):37–46. https://doi.org/10.1016/j.canlet.2011.03.013

    CAS  Article  PubMed  Google Scholar 

  175. 175.

    Wu T, Qu L, He G, Tian L, Li L, Zhou H, Jin Q, Ren J, Wang Y, Wang J (2016) Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget 7(10):11553

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Guan GF, Zhang DJ, Wen LJ, Xin D, Liu Y, Yu DJ, Su K, Zhu L, Guo YY, Wang K (2016) Overexpression of lncRNA H19/miR-675 promotes tumorigenesis in head and neck squamous cell carcinoma. Int J Med Sci 13(12):914–922. https://doi.org/10.7150/ijms.16571

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Xiao Q, Chen T, Wu Y, Wu W, Xu Y, Gong Z, Chen S (2018) MicroRNA-675-3p promotes esophageal squamous cell cancer cell migration and invasion. Mol Med Rep 18(4):3631–3640. https://doi.org/10.3892/mmr.2018.9372

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Zhou Y-W, Zhang H, Duan C-J, Gao Y, Cheng Y-D, He D, Li R, Zhang C-F (2016) miR-675-5p enhances tumorigenesis and metastasis of esophageal squamous cell carcinoma by targeting REPS2. Oncotarget 7(21):30730

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Li X, Lin Y, Yang X, Wu X, He X (2016) Long noncoding RNA H19 regulates EZH2 expression by interacting with miR-630 and promotes cell invasion in nasopharyngeal carcinoma. Biochem Biophys Res Commun 473(4):913–919. https://doi.org/10.1016/j.bbrc.2016.03.150

    CAS  Article  PubMed  Google Scholar 

  180. 180.

    Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10(1):10–27. https://doi.org/10.14740/wjon1166

    Article  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Yoshimura H, Matsuda Y, Yamamoto M, Michishita M, Takahashi K, Sasaki N, Ishikawa N, Aida J, Takubo K, Arai T, Ishiwata T (2018) Reduced expression of the H19 long non-coding RNA inhibits pancreatic cancer metastasis. Lab Invest 98(6):814–824. https://doi.org/10.1038/s41374-018-0048-1

    CAS  Article  PubMed  Google Scholar 

  182. 182.

    Wang Q, Jiang H, Ping C, Shen R, Liu T, Li J, Qian Y, Tang Y, Cheng S, Yao W, Wang L (2015) Exploring the Wnt pathway-associated LncRNAs and genes involved in pancreatic carcinogenesis driven by Tp53 mutation. Pharm Res 32(3):793–805. https://doi.org/10.1007/s11095-013-1269-z

    CAS  Article  PubMed  Google Scholar 

  183. 183.

    Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473. https://doi.org/10.1038/onc.2016.304

    CAS  Article  PubMed  Google Scholar 

  184. 184.

    Sun Y, Zhu Q, Yang W, Shan Y, Yu Z, Zhang Q, Wu H (2019) LncRNA H19/miR-194/PFTK1 axis modulates the cell proliferation and migration of pancreatic cancer. J Cell Biochem 120(3):3874–3886. https://doi.org/10.1002/jcb.27669

    CAS  Article  PubMed  Google Scholar 

  185. 185.

    Sasaki N, Toyoda M, Yoshimura H, Matsuda Y, Arai T, Takubo K, Aida J, Ishiwata T (2018) H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells. Oncotarget 9(78):34719–34734. https://doi.org/10.18632/oncotarget.26176

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. https://doi.org/10.1038/nrc2499

    CAS  Article  PubMed  Google Scholar 

  187. 187.

    Ma L, Tian X, Wang F, Zhang Z, Du C, Xie X, Kornmann M, Yang Y (2016) The long noncoding RNA H19 promotes cell proliferation via E2F–1 in pancreatic ductal adenocarcinoma. Cancer Biol Ther 17(10):1051–1061. https://doi.org/10.1080/15384047.2016.1219814

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Chiou SH, Dorsch M, Kusch E, Naranjo S, Kozak MM, Koong AC, Winslow MM, Gruner BM (2018) Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Sci Rep 8(1):14008. https://doi.org/10.1038/s41598-018-32159-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Li A, Omura N, Hong S-M, Vincent A, Walter K, Griffith M, Borges M, Goggins M (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70(13):5226–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Wang J, Zhang Y, Wei H, Zhang X, Wu Y, Gong A, Xia Y, Wang W, Xu M (2017) The mir-675-5p regulates the progression and development of pancreatic cancer via the UBQLN1-ZEB1-mir200 axis. Oncotarget 8(15):24978

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    Kim M, Morales LD, Jang I-S, Cho Y-Y, Kim DJ (2018) Protein tyrosine phosphatases as potential regulators of STAT3 signaling. Int J Mol Sci 19(9):2708

    PubMed Central  Google Scholar 

  192. 192.

    Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS (2013) Suppressor of cytokine signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS ONE 8(8):e70536

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X, Yang Y (2020) LncRNA H19-derived miR-675-3p promotes epithelial-mesenchymal transition and stemness in human pancreatic cancer cells by targeting the STAT3 pathway. J Cancer 11(16):4771–4782

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Cabasag CJ, Arnold M, Butler J, Inoue M, Trabert B, Webb PM, Bray F, Soerjomataram I (2020) The influence of birth cohort and calendar period on global trends in ovarian cancer incidence. Int J Cancer 146(3):749–758

    CAS  PubMed  Google Scholar 

  195. 195.

    Roychowdhury A, Samadder S, Das P, Mazumder DI, Chatterjee A, Addya S, Mondal R, Roy A, Roychoudhury S, Panda CK (2020) Deregulation of H19 is associated with cervical carcinoma. Genomics 112(1):961–970

    CAS  PubMed  Google Scholar 

  196. 196.

    Feigenberg T, Gofrit ON, Pizov G, Hochberg A, Benshushan A (2013) Expression of the h19 oncofetal gene in premalignant lesions of cervical cancer: a potential targeting approach for development of nonsurgical treatment of high-risk lesions. ISRN Obstet Gynecol 2013:137509. https://doi.org/10.1155/2013/137509

    Article  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Lee C, Kim SJ, Na JY, Park CS, Lee SY, Kim IH, Oh YK (2003) Alterations in promoter usage and expression levels of insulin-like growth factor-II and H19 genes in cervical and endometrial cancer. Cancer Res Treat 35(4):314–322. https://doi.org/10.4143/crt.2003.35.4.314

    Article  PubMed  Google Scholar 

  198. 198.

    Ou L, Wang D, Zhang H, Yu Q, Hua F (2018) Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res 26(3):401–410. https://doi.org/10.3727/096504017x15017209042610

    Article  PubMed  Google Scholar 

  199. 199.

    Ji F, Chen B, Du R, Zhang M, Liu Y, Ding Y (2019) Long non-coding RNA H19 promotes tumorigenesis of ovarian cancer by sponging miR-675. Int J Clin Exp Pathol 12(1):113

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Zeng Y, Li T-L, Zhang H-B, Deng J-L, Zhang R, Sun H, Wan Z-R, Liu Y-Z, Zhu Y-S, Wang G (2019) Polymorphisms in IGF2/H19 gene locus are associated with platinum-based chemotherapeutic response in Chinese patients with epithelial ovarian cancer. Pharmacogenomics 20(03):179–188

    CAS  PubMed  Google Scholar 

  201. 201.

    Wu Y, Zhou Y, He J, Sun H, Jin Z (2019) Long non-coding RNA H19 mediates ovarian cancer cell cisplatin-resistance and migration during EMT. Int J Clin Exp Pathol 12(7):2506–2515

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Lindsey BA, Markel JE, Kleinerman ES (2017) Osteosarcoma overview. Rheumatol Ther 4(1):25–43

    PubMed  Google Scholar 

  203. 203.

    Chan L, Wang W, Yeung W, Deng Y, Yuan P, Mak K (2014) Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 33(40):4857–4866

    CAS  PubMed  Google Scholar 

  204. 204.

    Sun X-H, Yang L-B, Geng X-L, Wang R, Zhang Z-C (2015) Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol 8(3):2994

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Zhao J, Ma ST (2018) Downregulation of lncRNA H19 inhibits migration and invasion of human osteosarcoma through the NF-κB pathway. Mol Med Rep 17(5):7388–7394

    CAS  PubMed  Google Scholar 

  206. 206.

    Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H (2018) Role of the NFκB-signaling pathway in cancer. OncoTargets Ther 11:2063

    Google Scholar 

  207. 207.

    He P, Zhang Z, Huang G, Wang H, Xu D, Liao W, Kang Y (2016) miR-141 modulates osteoblastic cell proliferation by regulating the target gene of lncRNA H19 and lncRNA H19-derived miR-675. Am J Transl Res 8(4):1780

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Lim Y-Y, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(10):2256–2266

    CAS  PubMed  Google Scholar 

  209. 209.

    Li M, Chen H, Zhao Y, Gao S, Cheng C (2016) H19 functions as a ceRNA in promoting metastasis through decreasing miR-200s activity in osteosarcoma. DNA Cell Biol 35(5):235–240

    PubMed  Google Scholar 

  210. 210.

    He T, Xu D, Sui T, Zhu J, Wei Z, Wang Y (2017) Association between H19 polymorphisms and osteosarcoma risk. Eur Rev Med Pharmacol Sci 21(17):3775–3780

    PubMed  Google Scholar 

  211. 211.

    Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, Tong L, Zhang W, Shen Y (2018) Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun 500(2):170–176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Abadan Faculty of Medical Sciences, Abadan, Iran (Grant Number: 98U-625).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan Ghasemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Medical Ethics Committee of Abadan Faculty of Medical Sciences (IR. ABADANUMS.REC. 1398.102).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alipoor, B., Parvar, S.N., Sabati, Z. et al. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep (2020). https://doi.org/10.1007/s11033-020-05695-x

Download citation

Keywords

  • Cancer
  • Long non-coding RNA
  • H19
  • Biomarker
  • miRNA sponging