Skip to main content

Advertisement

Log in

Anticancer and cytotoxic effects of troxerutin on HeLa cell line: an in-vitro model of cervical cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cervical cancer is one of the grave uterine tumors which leads to death in women worldwide. Troxerutin (TRX) as a bioflavonoid compound has many pharmacological effects such as anti-neoplastic, radioprotective, and anti-cancer. The present study was designed to examine the cytotoxic effect of TRX on human HeLa tumor cells. Human HeLa cells were cultured and treated with different doses of TRX (20–640 mg/ml) to evaluate the effective half-maximal inhibitory concentration (IC50) after 24 h. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was used for cell proliferation assay. Also, the Bax, Bcl-2, cleaved caspase-3, and tumor necrosis factor-α (TNF-α) protein expression levels were detected with immunoblotting analysis. The malondialdehyde (MDA) concentration, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity levels were measured via their commercial kits. Data were analyzed using one-way ANOVA. The result showed that TRX at 320 mg/ml concentration (IC50) has a growth inhibitory effect against HeLa cells at 24 h treatment (P ˂ 0.01). Moreover, it increased the MDA concentration and also decreased the GPx and SOD activity levels at 320 mg/ml concentration versus control (P < 0.001). Also, TRX significantly up-regulated the Bax, cleaved caspase-3 and TNF-α proteins expression levels (P  <  0.01) and down-regulated the Bcl-2 protein expression in HeLa tumor cells at 320 mg/ml concentration compared to control (P < 0.05). Our study showed that 24 h of treatment with TRX (320 mg/ml) has apoptotic and growth inhibitory effects against HeLa cells. It can induce inflammation (at least via up-regulating the TNF-α protein expression) and oxidative stress in human HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are inserted in the manuscript.

References

  1. Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X (2016) Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 10:1885–1895. https://doi.org/10.2147/dddt.s106412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Meerten E, Franckena M, Wiemer E, van Doorn L, Kraan J, Westermann A, Sleijfer S (2015) Phase I study of cisplatin, hyperthermia, and lapatinib in patients with recurrent carcinoma of the uterine cervix in a previously irradiated area. Oncologist 20(3):241–242. https://doi.org/10.1634/theoncologist.2014-0365

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ordikhani F, Erdem Arslan M, Marcelo R, Sahin I, Grigsby P, Schwarz JK, Azab AK (2016) Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics 8(3):23. https://doi.org/10.3390/pharmaceutics8030023

    Article  CAS  PubMed Central  Google Scholar 

  4. Hou T, Zhang W, Tong C, Kazobinka G, Huang X, Huang Y, Zhang Y (2015) Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer 15:785. https://doi.org/10.1186/s12885-015-1826-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C, Garcia-Carranca A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48. https://doi.org/10.1186/1471-2407-12-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodgkinson N, Kruger CA, Mokwena M, Abrahamse H (2017) Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J Photochem Photobiol B Biol 177:32–38. https://doi.org/10.1016/j.jphotobiol.2017.10.004

    Article  CAS  Google Scholar 

  7. Hiyama E (2014) Pediatric hepatoblastoma: diagnosis and treatment. Transl Pediatr 3(4):293

    PubMed  PubMed Central  Google Scholar 

  8. Florea AM, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3(1):1351–1371. https://doi.org/10.3390/cancers3011351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta Part A Mol Biomol Spectrosc 129:255–258. https://doi.org/10.1016/j.saa.2014.03.027

    Article  CAS  Google Scholar 

  10. Costa-Lotufo LV, Khan MT, Ather A, Wilke DV, Jimenez PC, Pessoa C, de Moraes ME, de Moraes MO (2005) Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol 99(1):21–30. https://doi.org/10.1016/j.jep.2005.01.041

    Article  PubMed  Google Scholar 

  11. Elliott M, Chithan K (2017) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. The flavonoids advances in research since 1986. Routledge, Abingdon, pp 619–652

    Google Scholar 

  12. Kaeidi A, Sahamsizadeh A, Allahtavakoli M, Fatemi I, Rahmani M, Hakimizadeh E, Hassanshahi J (2020) The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis. Mol Biol Rep 47(2):1371–1379. https://doi.org/10.1007/s11033-019-05237-0

    Article  CAS  PubMed  Google Scholar 

  13. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534

    Article  CAS  Google Scholar 

  14. Yang X, Wang F, Hu S (2006) The electrochemical oxidation of troxerutin and its sensitive determination in pharmaceutical dosage forms at PVP modified carbon paste electrode. Colloids Surf B Biointerfaces 52(1):8–13. https://doi.org/10.1016/j.colsurfb.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  15. Kaeidi A, Taghipour Z, Allahtavakoli M, Fatemi I, Hakimizadeh E, Hassanshahi J (2020) Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats. Naunyn Schmiedebergs Arch Pharmacol 393(5):879–888. https://doi.org/10.1007/s00210-019-01801-4

    Article  CAS  PubMed  Google Scholar 

  16. Thomas NS, George K, Selvam AAA (2019) Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Toxicol In Vitro 54:317–329

    Article  CAS  Google Scholar 

  17. Maurya DK, Salvi VP, Krishnan Nair CK (2004) Radioprotection of normal tissues in tumor-bearing mice by troxerutin. J Radiat Res 45(2):221–228. https://doi.org/10.1269/jrr.45.221

    Article  CAS  PubMed  Google Scholar 

  18. Panat NA, Singh BG, Maurya DK, Sandur SK, Ghaskadbi SS (2016) Troxerutin, a natural flavonoid binds to DNA minor groove and enhances cancer cell killing in response to radiation. Chem Biol Interact 251:34–44. https://doi.org/10.1016/j.cbi.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  19. Subastri A, Suyavaran A, Preedia Babu E, Nithyananthan S, Barathidasan R, Thirunavukkarasu C (2018) Troxerutin with copper generates oxidative stress in cancer cells: its possible chemotherapeutic mechanism against hepatocellular carcinoma. J Cell Physiol 233(3):1775–1790. https://doi.org/10.1002/jcp.26061

    Article  CAS  PubMed  Google Scholar 

  20. Hajializadeh Z, Nasri S, Kaeidi A, Sheibani V, Rasoulian B, Esmaeili-Mahani S (2014) Inhibitory effect of Thymus caramanicus Jalas on hyperglycemia-induced apoptosis in in vitro and in vivo models of diabetic neuropathic pain. J Ethnopharmacol 153(3):596–603

    Article  Google Scholar 

  21. Rasoulian B, Kaeidi A (2017) Cellular preoxygenation partially attenuates the antitumoral effect of cisplatin despite highly protective effects on renal epithelial cells. Oxid Med Cell Longev 2017:7203758. https://doi.org/10.1155/2017/7203758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaeidi A, Hajializadeh Z (2019) Leptin attenuates oxidative stress and neuronal apoptosis in hyperglycemic condition. Fundam Clin Pharmacol 33(1):75–83. https://doi.org/10.1111/fcp.12411

    Article  CAS  PubMed  Google Scholar 

  23. Souza AO, Pereira LC, Oliveira DP, Dorta DJ (2013) BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2. Toxicology In Vitro Int J Pub Assoc BIBRA 27(2):580–587. https://doi.org/10.1016/j.tiv.2012.09.022

    Article  CAS  Google Scholar 

  24. Hseu YC, Lee MS, Wu CR, Cho HJ, Lin KY, Lai GH, Wang SY, Kuo YH, Kumar KJ, Yang HL (2012) The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway. J Agric Food Chem 60(9):2385–2397. https://doi.org/10.1021/jf205053r

    Article  CAS  PubMed  Google Scholar 

  25. Kausch I, Böhle A (2002) Antisense oligonucleotide therapy in urology. J Urol 168(1):239–247

    Article  CAS  Google Scholar 

  26. Thomas NS, George K, Selvam AAA (2019) Anticancer mechanism of troxerutin via targeting Nrf2 and NF-kappaB signalling pathways in hepatocarcinoma cell line. Toxicol In Vitro Int J Pub Assoc BIBRA 54:317–329. https://doi.org/10.1016/j.tiv.2018.10.018

    Article  CAS  Google Scholar 

  27. Li Y, Wang SJ, Xia W, Rahman K, Zhang Y, Peng H, Zhang H, Qin LP (2014) Effects of tatariside G isolated from Fagopyrum tataricum roots on apoptosis in human cervical cancer HeLa cells. Molecules 19(8):11145–11159. https://doi.org/10.3390/molecules190811145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Q, Li P, Li P, Xu Y, Li Y, Tang B (2015) Isoquercitrin inhibits the progression of pancreatic cancer in vivo and in vitro by regulating opioid receptors and the mitogen-activated protein kinase signalling pathway. Oncol Rep 33(2):840–848. https://doi.org/10.3892/or.2014.3626

    Article  CAS  PubMed  Google Scholar 

  29. Dong Y, Wu Y (2017) Lysophosphatidic acid triggers apoptosis in HeLa Cells through the upregulation of tumor necrosis factor receptor superfamily member 21. Mediators Inflamm 2017:12. https://doi.org/10.1155/2017/2754756

    Article  CAS  Google Scholar 

  30. Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU, Kim YS (2012) Parkin induces apoptotic cell death in TNF-alpha-treated cervical cancer cells. BMB Rep 45(9):526–531. https://doi.org/10.5483/bmbrep.2012.45.9.104

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Q, Wang W, Cui J (2019) Melatonin enhances TNF-alpha-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell Int 19:58. https://doi.org/10.1186/s12935-019-0777-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL (1998) TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 17(13):1639–1651. https://doi.org/10.1038/sj.onc.1202094

    Article  CAS  PubMed  Google Scholar 

  33. Singh K, Poteryakhina A, Zheltukhin A, Bhatelia K, Prajapati P, Sripada L, Tomar D, Singh R, Singh AK, Chumakov PM (2015) NLRX1 acts as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. Biochim et Biophys Acta (BBA)-Mol Cell Res 1853(5):1073–1086

    Article  CAS  Google Scholar 

  34. Shi RX, Ong CN, Shen HM (2004) Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells. Oncogene 23(46):7712–7721. https://doi.org/10.1038/sj.onc.1208046

    Article  CAS  PubMed  Google Scholar 

  35. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10(1):45

    Article  CAS  Google Scholar 

  36. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res 19(16):4309–4314. https://doi.org/10.1158/1078-0432.ccr-12-1424

    Article  CAS  Google Scholar 

  37. Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2(1):17

    Article  Google Scholar 

  38. Liu H, Jiang C, Xiong C, Ruan J (2012) DEDC, a new flavonoid induces apoptosis via a ROS-dependent mechanism in human neuroblastoma SH-SY5Y cells. Toxicol In Vitro Int J Pub Assoc BIBRA 26(1):16–23. https://doi.org/10.1016/j.tiv.2011.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Rafsanjan University of Medical Sciences (Grant No. 98267).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: AK, JH, ZH. Performed the experiments: AK, JH, AM and ZH. Analyzed the data: AK and ZH. Contributed reagents/materials/analysis tools: AK and JH. Wrote the paper: JH, AM, AK and ZH.

Corresponding author

Correspondence to Ayat Kaeidi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All ethical considerations of the Journal have been approved.

Informed consent

All authors agree to submit the manuscript to this journal. All authors are content with their participation in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanshahi, J., Mirzahosseini-pourranjbar, A., Hajializadeh, Z. et al. Anticancer and cytotoxic effects of troxerutin on HeLa cell line: an in-vitro model of cervical cancer. Mol Biol Rep 47, 6135–6142 (2020). https://doi.org/10.1007/s11033-020-05694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05694-y

Keywords

Navigation