Skip to main content
Log in

Evaluation of significant gene expression changes in congenital and acquired cholesteatoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Etiopathogenesis of acquired and congenital cholesteatoma is still unclear. The clinical behavior of adult acquired, pediatric acquired and congenital cholesteatomas show differences. The scope of the this study was to detect the matrix metalloproteinase (MMP), tissue inhibitors of metalloproteinase (TIMP) and epidermal growth factor receptor (EGFR) gene expression changes in cholesteatoma perimatrix and to compare these changes among congenital cholesteatoma, adult acquired cholesteatoma and pediatric acquired cholesteatoma. A total of 16 genes including MMPs, TIMPs and EGFR were analyzed in the samples of 32 cholesteatoma tissues. Real-time PCR was used for detection of the gene expression levels. Data analyses were achieved by ΔΔCT method (Light Cycler 480 Quantification Software) and Statistical Package for Social Sciences (SPSS) version 22.0. The expression levels of MMP-2, -9, -10, -11, -13, -14, -15, -16 and EGFR genes were significantly higher in acquired cholesteatoma than healthy tissue (p < 0.05). There was a statistically significant decrease (3.34 times more) in the mean TIMP-2 gene expression level in acquired cholesteatoma compared to healthy tissue (p < 0.05). There was a significant increase in the mean expression level of MMP-7 gene and a decrease in the mean expression level of TIMP-1 gene (3.12 times more) in congenital cholesteatoma compared to healthy tissue (p < 0.05). This study indicates that increased expression levels of some particular MMP genes and EGFR gene and decreased expression levels of TIMP genes may play an important role in the development of cholesteatoma. Further, MMP-9, MMP-13 and MMP-14 genes may have a remarkable role in the development of more aggressive cholesteatoma forms. The authors concluded that overexpression of MMP-9, MMP-13 and MMP-14 may cause stronger inflammation associated with cholesteatoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Yung M, Tono T, Olszewska E, Yamamoto Y, Sudhoff H, Sakagami M et al (2017) EAONO/JOS joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol 13(1):1–8

    Article  Google Scholar 

  2. Tokuriki M, Noda I, Saito T et al (2003) Gene expression analysis of human middle ear cholesteatoma using complementary DNA arrays. Laryngoscope 113(5):808–814

    Article  CAS  Google Scholar 

  3. Miyao M, Shinoda H, Takahashi S (2006) Caspase 3, caspase 8 and nuclear factor-kappa B expression in human cholesteatoma. Otol Neurotol 27(1):8–13

    Article  Google Scholar 

  4. Banerjee AR, James R, Narula AA, Lee RJ (1998) Matrix metalloproteinase-1 in cholesteatoma, middle ear granulations and deep meatal skin: a comparative analysis. Clin Otolaryngol 23:515–519

    Article  CAS  Google Scholar 

  5. Schmidt M, Grunsfelder P, Hoppe F (2000) Induction of matrix metalloproteinases in keratinocytes by cholesteatoma debris and granulation tissue extracts. Eur Arch Otorhinolaryngol 257:425–429

    Article  CAS  Google Scholar 

  6. Shibosawa E, Tsutsumi K, Takakuwa T, Takahashi S (2000) Stromal expression of matrix metalloprotease-9 in middle ear cholesteatomas. Am J Otol 21:621–624

    CAS  PubMed  Google Scholar 

  7. Schönermark M, Mester B, Kempf HG, Bläser J, Tschesche H, Lenarz T (1996) Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol 116(3):451–456

    Article  Google Scholar 

  8. Suchozebrska-Jesionek D, Szymański M, Kurzepa J, Gołabek W, Stryjecka-Zimmer M (2008) Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma. J Otolaryngol Head Neck Surg 37(5):628–632

    PubMed  Google Scholar 

  9. Morales DSR, Penido NO, Silva IDCG, Stávale JN, Guilherme A, Fukuda Y (2007) Matrix metalloproteinase 2: an important genetic marker for cholesteatomas. Braz J Otorhinolaryngol 73(1):55–61

    Google Scholar 

  10. Migirov L, Weissburd S, Wolf M (2010) Mastoidectomy in the elderly. ORL J Otorhinolaryngol Relat Spec 72(2):80–83

    Article  Google Scholar 

  11. Jin BJ, Min HJ, Jeong JH, Park CW, Lee SH (2011) Expression of EGFR and microvessel density in middle ear cholesteatoma. Clin Exp Otorhinolaryngol 4(2):67–71. https://doi.org/10.3342/ceo.2011.4.2.67

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alves AL, Pereira CSB, Carvalho MDFP, Fregnani JHTG, Ribeiro FQ (2012) EGFR expression in acquired middle ear cholesteatoma in children and adults. Eur J Pediatr 171(2):307–310

    Article  CAS  Google Scholar 

  13. Palkó E, Póliska S, Sziklai I, Penyige A (2018) Analysis of KRT1, KRT10, KRT19, TP53 and MMP9 expression in pediatric and adult cholesteatoma. PLoS One 13(7):e0200840. https://doi.org/10.1371/journal.pone.0200840

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Article  CAS  Google Scholar 

  15. Rifkin BR, Vernillo AT, Golub LM, Ramamurthy NS (1994) Modulation of bone resorption by tetracyclines. Ann NY Acad Sci 732:165–180

    Article  CAS  Google Scholar 

  16. Palkó E, Póliska S, Csákányi Z et al (2014) The c-MYC protooncogene expression in cholesteatoma. Biomed Res Int 2014:639896. https://doi.org/10.1155/2014/639896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. https://www.genecards.org

  18. Rezende CE, Souto RP, Rapoport PB, Campos Ld, Generato MB (2012) Cholesteatoma gene expression of matrix metalloproteinases and their inhibitors by RTPCR. Braz J Otorhinolaryngol 78(3):116–121

    Article  Google Scholar 

  19. Wu Y, Tang X, Shao W, Lu Y (2019) Effect of CT manifestations of cholesteatoma on MMP-2, MMP-9 and IL-6 in the serum of patients. Exp Ther Med 17(6):4441–4446. https://doi.org/10.3892/etm.2019.7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mehta D, Daudia A, Birchall JP, Banerjee AR (2007) The localization of matrix metalloproteinases-8 and-13 in cholesteatoma, deep-meata land postauricular skin: a comparative analysis. Acta Otolaryngol 127(2):138–142

    Article  CAS  Google Scholar 

  21. Murphy G, Willenbrock F, Crabbe T et al (1994) Regulation of matrix metalloproteinase activity. Ann NY Acad Sci 732:31–41

    Article  CAS  Google Scholar 

  22. Kobayashi H, Asano K, Kanai K, Suzaki H (2005) Suppressive activity of vitamin D3 on matrix metalloproteinase production from cholesteatoma keratinocytes in vitro. Mediat Inflamm 2005(4):210–215. https://doi.org/10.1155/MI.2005.210

    Article  CAS  Google Scholar 

  23. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  Google Scholar 

  24. Lynrah ZA, Bakshi J, Panda NK, Khandelwal NK (2013) Aggressiveness of pediatric cholesteatoma. Do we have an evidence? Indian J Otolaryngol Head Neck Surg 65(3):264–268. https://doi.org/10.1007/s12070-012-0548-z

    Article  PubMed  Google Scholar 

  25. Dornelles CC, daCosta SS, Meurer L, Rosito LP, da Silva AR, Alves SL (2009) Comparison of acquired cholesteatoma between pediatric and adult patients. Eur Arch Otorhinolaryngol 266:1553–1561

    Article  Google Scholar 

  26. Mallet Y, Nouwen J, Locomte-Houcke M, Desaulty A (2003) Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by M1B1. Laryngoscope 113:328–331

    Article  CAS  Google Scholar 

  27. Morita Y, Takahashi K, Izumi S et al (2017) Risk factors of recurrence in pediatric congenital cholesteatoma. Otol Neurotol 38:1463–1469

    Article  Google Scholar 

  28. Zarrabi K, Dufour A, Li J et al (2011) Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem 286(38):33167–33177. https://doi.org/10.1074/jbc.M111.256644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fetih Furkan Şahin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study was approved by the institutional review board of the tertiary academic center. For human specimen collection, informed consent was obtained from all the participated adults or parents of children in written form as per the institutional ethics committee approval. No animal were used for this research.

Consent for publication

Consent forms for publication of surgical and radiological images were obtained from individuals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, İ., Avcı, Ç.B., Şahin, F.F. et al. Evaluation of significant gene expression changes in congenital and acquired cholesteatoma. Mol Biol Rep 47, 6127–6133 (2020). https://doi.org/10.1007/s11033-020-05689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05689-9

Keywords

Navigation