Skip to main content

Advertisement

Log in

Preclinical study of the medicinal plants for the treatment of malignant melanoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Melanoma is the most aggressive type of skin cancer and originates from pigment-containing cells called melanocytes. The incidence of melanoma has been increasing worldwide. In the current study, the cytotoxic and photo-cytotoxic activities of different medicinal plants from Lamiaceae (Salvia cedronella, Salvia chionantha, and Salvia adenophylla), Asteraceae (Klasea kurdica, Klasea bornmuelleri, and Achillea millefolium), Apiaceae (Cuminum cyminum, and Anethum graveolens), and Polygonaceae (Rumex crispus) families were studied against HT 144 (Human malignant melanoma) cancer cell lines. The activities were performed by employing the MTT assay. Moreover, the apoptotic effects of the plant extracts were investigated by flow cytometry with annexin V/PI dual staining technique. The production of intracellular ROS by DCFH-DA technique and the effects of TNF-α secretion on apoptosis were also investigated. All plant extracts exhibited cytotoxic, and photo-cytotoxic effects against HT 144 cancer cells. Salvia species and Klasea species induced apoptosis via intracellular ROS generation secreted by TNF-α. On the other hand, A. millefolium, C. cyminum, A. graveolens, and R. crispus extracts induced apoptosis due to the intracellular generation of ROS, but, via the different pathway. In conclusion, this study indicates that the tested medicinal plant extracts have the potential in the treatment of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HT 144:

Malignant melanoma cell lines

RNO:

p-Nitrosodimethylaniline

DCFH-DA:

2′,7′-Dichloro-dihydro-fluorescein diacetate

TNF-α:

Tumor necrosis factor-alpha

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

DMSO:

Dimethyl sulfoxide

FITC:

Fluorescein isothiocyanate

References

  1. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK et al (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9:581–591

    Article  CAS  Google Scholar 

  2. Pankaj S, Kumari A, Kumari J, Nazneen S, Kumari A, Choudhary V (2018) Cervical melanoma, a rare tumor with poor prognosis: case report and review of literature. Indian J Gynecol Oncol 16:41

    Article  Google Scholar 

  3. Nascimento FR, Moura TA, Baeta JVPB, Publio BC, Ferreira PMF, Santos AA et al (2018) New antineoplastic agent based on a dibenzoylmethane derivative: cytotoxic effect and direct interaction with DNA. Biophys Chem 239:1–6

    Article  CAS  Google Scholar 

  4. Liyanage UE, Law MH, Ong JS, Cust AE, Mann GJ, Ward SV et al (2018) Polyunsaturated fatty acids and risk of melanoma: a Mendelian randomization analysis. Int J Cancer 143:508–514

    Article  CAS  Google Scholar 

  5. Mihajlovic M, Vlajkovic S, Jovanovic P, Stefanovic V (2012) Primary mucosal melanomas: a comprehensive review. Int J Clin Exp Pathol 5:739–753

    PubMed  PubMed Central  Google Scholar 

  6. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P et al (2005) Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 41:28–44

    Article  Google Scholar 

  7. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P et al (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure Eur J Cancer 41:45–60

    Article  Google Scholar 

  8. Gandini S, Sera F, Cattaruzza MS, Zanetti R, Masini C, Abeni D et al (2005) Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage, and phenotypic factors. Eur J Cancer 41:2040–2059

    Article  Google Scholar 

  9. MacKie RM, Hauschild A, Eggermont AMM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol 20:vi1–vi7

    Article  Google Scholar 

  10. De Oliveira Júnior RG, Ferraz CAA, e Silva MG, de Lavor ÉM, Rolim LA, de Lima JT, Fleury A, Picot L, de Souza Siqueira Quintans J, Júnior LJQ, da Silva Almeida JRG (2017) Flavonoids: promising natural products for treatment of skin cancer (Melanoma). In: Badria FA (ed) Natural products and cancer drug discovery. IntechOpen, London, pp 161–210

    Google Scholar 

  11. Mouawad R, Sebert M, Michels J, Bloch J, Spano J-P, Khayat D (2010) Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol 74:27–39

    Article  Google Scholar 

  12. Bharadwaj R, Das PJ, Pal P, Mazumder B (2016) Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev Ind Pharm 42:1482–1494

    Article  CAS  Google Scholar 

  13. Vishnubhakthula S, Elupula R, Durán-Lara EF (2017) Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: a mini review. J Drug Deliv 2017:9 (Article ID 7275985)

    Article  Google Scholar 

  14. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151

    Article  CAS  Google Scholar 

  15. Turner KA, Manouchehri JM, Kalafatis M (2018) Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin. Melanoma Res 28:277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486

    Article  CAS  Google Scholar 

  17. Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethnopharmacol 100:72–79

    Article  CAS  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  19. Aydoğmuş-Öztürk F, Günaydın K, Öztürk M, Jahan H, Duru ME, Choudhary MI (2018) Effect of Sideritis leptoclada against HT 144 human malignant melanoma. Melanoma Res 28:502–509

    Article  Google Scholar 

  20. Lihuan D, Jingcun Z, Ning J, Guozeng W, Yiwei C, Wei L et al (2014) Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells. Lasers Surg Med 46:319–334

    Article  Google Scholar 

  21. Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp 57:e3357

    Google Scholar 

  22. Batt J, Milward M, Chapple I, Grant M, Roberts H, Addison O (2018) TiO2 nanoparticles can selectively bind CXCL8 impacting on neutrophil chemotaxis. Eur Cell Mater 35:13–24

    Article  CAS  Google Scholar 

  23. Fraihat A, Alatrash L, Abbasi R, Abu-Irmaileh B, Hamed S, Mohammad M et al (2018) Inhibitory effects of methanol extracts of selected plants proliferation of two human melanoma cell lines. Trop J Pharm Res 17:1645–1650

    Article  CAS  Google Scholar 

  24. Tundis R, Loizzo MR, Menichini F, Bonesi M, Colica C, Menichini F (2011) In vitro cytotoxic activity of Salvia leriifolia BENTH. against a panel of human cancer cell lines. Chem Biodivers 8:1152–1162

    Article  CAS  Google Scholar 

  25. Isaia AI, Ienascu IMC, Andrica FM, Georgescu D, Bratosin D, Pinzaru IA (2016) Preliminary in vitro evaluation of seven different plant extracts on A375, B164A5 and HaCat cell lines. Rev Chim 67:1633–1636

    Google Scholar 

  26. Ghavami G, Sardari S, Shokrgozar MA (2010) Anticancerous potentials of Achillea species against selected cell lines. J Med Plants Res 4:2411–2417

    Google Scholar 

  27. de Dieu Tamokou J, Chouna JR, Fischer-Fodor E, Chereches G, Barbos O, Damian G et al (2013) Anticancer and antimicrobial activities of some antioxidant-rich cameroonian medicinal plants. PLoS One 8:e55880

    Article  Google Scholar 

  28. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  Google Scholar 

  29. Gius D, Botero A, Shah S, Curry HA (1999) Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett 106(2–3):93–106

    Article  CAS  Google Scholar 

  30. Lavric IN, Golks A, Krammer PH (2008) Caspases: pharmacological manipulation of cell death. In: Marks AR, Neill US (eds) Science in medicine the JC textbook of molecular medicine. Jones and Bartlett Publishers, Burlington, pp 18–25

    Google Scholar 

  31. Yeşilyurt V, Halfon B, Öztürk M, Topçu G (2008) Antioxidant potential and phenolic constituents of Salvia cedronella. Food Chem 108:31–39

    Article  Google Scholar 

  32. Tel G, Öztürk M, Duru ME, Harmandar M, Topçu G (2010) Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food Chem Toxicol 48:3189–3193

    Article  CAS  Google Scholar 

  33. Tel G, Doğan B, Erol E, Öztürk M, Nadeem S, Ullah Z, Duru ME, Duran A (2016) determination of antioxidant, anticholinesterase, tyrosinase inhibitory activities and fatty acid profiles of 10 anatolian Klasea cass. species. Rec Nat Prod 10:122–127

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Fatma AYDOĞMUŞ-ÖZTÜRK would like to thank all the staff of the Dr. Panjwani Center for Molecular Medicine and Drug Research (ICCBS), University of Karachi, Pakistan, for providing research facilities.

Funding

This study is part of F.A.-Ö.'s Ph. D. thesis and was supported by the Research Fund of Istanbul University (Project Number: TP-19969). Mugla Sitki Kocman University Research Projects Coordination Office was also acknowledged with the Project Number 18/035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Aydoğmuş-Öztürk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydoğmuş-Öztürk, F., Jahan, H., Öztürk, M. et al. Preclinical study of the medicinal plants for the treatment of malignant melanoma. Mol Biol Rep 47, 5975–5983 (2020). https://doi.org/10.1007/s11033-020-05671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05671-5

Keywords

Navigation