Skip to main content

Advertisement

Log in

Construction of a high-density genetic linkage map and identification of gene controlling resistance to cucumber mosaic virus in Luffa cylindrica (L.) Roem. based on specific length amplified fragment sequencing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Luffa cylindrica L. is a cash crop which has important health, medicinal and industrial value, but no high saturation genetic map has been constructed owing to a lack of efficient markers. Furthermore, no genes were reportedly responsible for CMV resistance in Luffa spp. Specific length amplified fragment sequencing (SLAF-seq) is a valuable tool for large-scale discovery of markers and genetic mapping. The present study reported the construction of a high-density genetic map and the mapping of CMV resistant genes by using an F2 population of 130 individuals and their two inbred line parents. A total of 271.01 Mb pair-end reads were generated. 100,077 high-quality SLAFs were detected, and 7404 of them were polymorphic. Finally, 3701 of the polymorphic markers were selected for genetic map construction, and 13 linkage groups were generated. The map spanned 1518.56 cM with an average distance of 0.41 cM between adjacent markers. Based on the newly constructed high-density map, one gene located on chromosome 1 (100.072–100.457 cM) was identified to regulate CMV resistance in L. cylindrica. A gag-polypeptide of LTR copia-type retrotransposon was predicted as the candidate gene responsible for CMV resistance in L. cylindrica. The high-density genetic map and the CMV resistant gene mapped and predicted in this study will be useful in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included herein.

References

  1. Oboh IO, Aluyor EO (2009) Luffa cylindrical-an emerging cash crop. Afr J Agric Res 4:684–688

    Google Scholar 

  2. Rabei S, Rizk RM, Khedr AHA (2013) Keys for and morphological character variation in some Egyptian cultivars of Cucurbitaceae. Genet Resour Crop Evol 60:1353–1364. https://doi.org/10.1007/s10722-012-9924-5

    Article  Google Scholar 

  3. Prakash K, Pandey A, Radhamani J, Bisht IS (2013) Morphological variability in cultivated and wild species of Luffa (Cucurbitaceae) from India. Genet Resour Crop Evol 60:2319–2329. https://doi.org/10.1007/s10722-013-9999-7

    Article  Google Scholar 

  4. Dairo FAS, Aye PA, Oluwasola TA (2007) Some functional properties of loofah gourd (Luffa cylindrical L., M. J. Roem) seed. J Food Agric Environ 5:97–101

    CAS  Google Scholar 

  5. Fernandes LCB, Cordeiro LAV, Soto-Blanco B (2010) Luffa acutangula Roxb. tea promotes developmental toxicity to rats. J Anim Vet Adv 9:1255–1258

    Article  Google Scholar 

  6. Shang LH, Li CM, Yang ZY, Che DH, Cao JY, Yu Y (2012) Luffa echinata Roxb. induces human colon cancer cell (HT-29) death by triggering the mitochondrial apoptosis pathway. Molecules 17:5780–5794

    Article  CAS  Google Scholar 

  7. Jamwal M, Sharma N (2015) Reproductive efficiency of two Luffa species-factors affecting low reproductive rate in meiotically stable Luffa acutangula (L.) Roxb. Nucleus 58:59–65

    Article  Google Scholar 

  8. Papanicolaou GC, Psarra E, Anastasiou D (2015) Manufacturing and mechanical response optimization of epoxy resin/Luffa cylindrical composite. J Appl Polym Sci 132:41992. https://doi.org/10.1002/app.41992

    Article  CAS  Google Scholar 

  9. Shahidi A, Jalilnejad N, Jalilnejad E (2015) A study on adsorption of cadmium(II) ions from aqueous solution using Luffa cylindrical. Desalin Water Treat 53:3570–3579

    Article  CAS  Google Scholar 

  10. Cui J, Cheng J, Wang G, Tang X, Wu Z, Lin M, Li L, Hu K (2015) QTL analysis of three flower-related traits based on an interspecific genetic map of Luffa. Euphytica 202:45–54. https://doi.org/10.1007/s10681-014-1208-z

    Article  Google Scholar 

  11. Wu H, He X, Gong H, Luo S, Li M, Chen J, Zhang C, Yu T, Huang W, Luo J (2016) Genetic linkage map construction and QTL analysis of two interspecific reproductive isolation traits in sponge gourd. Front Plant Sci 7:980. https://doi.org/10.3389/fpls.2016.00980

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang T, Ren X, Zhang Z, Ming Y, Yang Z, Hu J, Li S, Wang Y, Sun S, Sun K, Piao F, Sun Z (2020) Long-read sequencing and de novo assembly of the Luffa cylindrica (L.) Roem. genome. Mol Ecol Resour 20:511–519. https://doi.org/10.1111/1755-0998.13129

    Article  CAS  PubMed  Google Scholar 

  13. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700. https://doi.org/10.1371/journal.pone.0058700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  Google Scholar 

  15. Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics 15:1086

    Article  Google Scholar 

  16. Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X, Jiang H, Hong W, Hu G, Zheng H, Chen Q (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS ONE 9:104871

    Article  Google Scholar 

  17. Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res 22:183–191. https://doi.org/10.1093/dnares/dsv003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) Sequencing. BMC Genomics 15:1158. https://doi.org/10.1186/1471-2164-15-1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X (2015) A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci 5:768. https://doi.org/10.3389/fpls.2014.00768

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang B, Liu W, Xie D, Peng Q, He X, Lin Y, Liang Z (2015) High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genomics 16:1035. https://doi.org/10.1186/s12864-015-2220-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He Y, Yuan W, Dong M, Han Y, Shang F (2017) The first genetic map in sweet osmanthus (Osmanthus fragrans Lour.) using specific locus amplified fragment sequencing. Front Plant Sci 8:1621. https://doi.org/10.3389/fpls.2017.01621

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacquemond M (2012) Chapter 13 - Cucumber mosaic virus. Adv Virus Res 84:439–504

    Article  Google Scholar 

  23. Rani A, Jansirani P, Rabindran R (2017) Screening and identification of ridge gourd [Luffa acutangula (L.) Roxb] genotypes against Cucumber mosaic virus (CMV) tolerance. Int J Curr Microbiol App Sci 6:119–127. https://doi.org/10.20546/ijcmas.2017.603.013

    Article  Google Scholar 

  24. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018. https://doi.org/10.1073/pnas.81.24.8014

    Article  CAS  PubMed  Google Scholar 

  25. Munshi AD, Panda B, Mandal B, Bisht IS, Rao ES, Kumar R (2008) Genetics of resistance of cucumber mosaic virus in Cucumis sativus var. hardwickii R. Alef Euphytica 164:501–507. https://doi.org/10.1007/s10681-008-9741-2

    Article  CAS  Google Scholar 

  26. Bos L (1982) Crop losses caused by viruses. Crop Prot 1:263–282

    Article  Google Scholar 

  27. Yao M, Li N, Wang F, Ye Z (2013) Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica 193:135–145. https://doi.org/10.1007/s10681-013-0953-8

    Article  CAS  Google Scholar 

  28. Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855. https://doi.org/10.1371/journal.pone.0098855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  31. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Maucelli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  Google Scholar 

  32. West MAL, van Leeuwen H, Kozik A, Kliebenstin DJ, Doerge RW, St Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795. https://doi.org/10.1101/gr.5011206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takahashi H, Miller J, Nozaki Y, Sukamto TM, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  Google Scholar 

  34. Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucsa WJ (2006) Gilbertson RL. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. PNAS 103:11856–11861

    Article  CAS  Google Scholar 

  35. Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596. https://doi.org/10.1007/s00122-010-1278-9

    Article  CAS  PubMed  Google Scholar 

  36. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M (2004) The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 78:6102–6111

    Article  CAS  Google Scholar 

  37. Caranta C, Pflieger S, Lefebvre V, Daubèze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591

    Article  CAS  Google Scholar 

  38. Valkonen JPT, Watanabe KN (1999) Autonomous cell death, temperature sensitivity and the genetic control associated with resistance to cucumber mosaic virus (CMV) in diploid potatoes (Solanum spp). Theor Appl Genet 99:996–1005

    Article  Google Scholar 

  39. Karchi Z, Cohen S, Govers A (1975) Inheritance of resistance to Cucumber Mosaic virus in melons. Phytopathology 65:479–481

    Article  Google Scholar 

  40. Dogimont C, Leconte L, Périn C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acta Hort 510:391–398

    Article  CAS  Google Scholar 

  41. Guiu-Aragonés C, Monforte AJ, Saladié M, Corrêa RX, Garcia-Mas J, Martín-Hernández AM (2014) The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol Breeding 34:351–362

    Article  Google Scholar 

  42. Caranta C, Palloix A, Lefebvre V, Daubèze AM (1997) QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host-cells. Theor Appl Genet 94:431–438. https://doi.org/10.1007/s001220050433

    Article  CAS  Google Scholar 

  43. Nono-Wondim R, Gebre-Selassie K, Palloix A, Pochard E, Marchoux G (1993) Study of multiplication of cucumber mosaic virus in susceptible and resistant Capsicum annuum lines. Ann Appl Biol 122:49–56

    Article  Google Scholar 

  44. Dufour O, Palloix A, Gebre-Selassie K, Pochard E, Marchoux G (1989) The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Can J Bot 67:655–660

    Article  Google Scholar 

  45. Diaz-Pendon JA, Truniger V, Nieto C, Garcia-mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to pant viruses. Mol Plant Pathol 5:223–233. https://doi.org/10.1111/j.1364-3703.2004.00223.x

    Article  CAS  PubMed  Google Scholar 

  46. Mazier M, Flamain F, Nicolaï M, Sarnette V, Caranta C (2011) Knockdown of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6:e29595

    Article  CAS  Google Scholar 

  47. Rodríguez-Hernández AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13:755–763

    Article  Google Scholar 

  48. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  Google Scholar 

  49. Requena A, Simón-Buela L, Salcedo G, García-Arenal F (2006) Potential involvement of a cucumber homolog of phloem protein 1 in the long-distance movement of Cucumber mosaic virus particles. Mol Plant Microbe Interact 19:734–746

    Article  CAS  Google Scholar 

  50. Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  CAS  Google Scholar 

  51. Moreau-mhiri C, Morel JB, Audeon C, Ferault M, Grandbastien MA, Lucas H (1996) Regulation of expression of the tobacco Tnt1 retrotransposon in heterologous species following pathogen-related stresses. Plant J 9:409–419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 31501778). We thank Dr. Jeroen A. Berg for valuable suggestions during the preparation of the manuscript. We also acknowledge the reviewers for their constructive comments to improve the manuscript. We would give thanks to Biomarker Technologies Co., Ltd., Beijing for technical support in bioinformatics. Also we would like to thank Biomics (Beijing) Biotech Co. Ltd for providing technical support for the RNA-seq data. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31501778).

Author information

Authors and Affiliations

Authors

Contributions

LL designed, performed, analyses and drafted the experiments. With valuable suggestions by SX as well as technical assistance by LZ and LX. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lina Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 279 kb)

Number of SLAF markers in each of eight segregation patterns.

Supplementary file2 (JPG 140 kb)

Distribution of all mapped SNP markers on all individuals. The X-axes indicate individual F2 plants. The Y-axes indicate the distribution of all mapped markers.

Supplementary file3 (PDF 1796 kb)

Haplotype map of the genetic map. Green represents ʻP1-21ʼ, blue represent ʻP2-16ʼ, gray represents missing data, and red indicates heterozygosity. The two columns represent the genotype of an individual. Rows correspond to genetic markers.

Supplementary file4 (PDF 419 kb)

Heat map of the genetic map. Each cell represents the recombination rate of two markers. Yellow indicates a lower recombination rate and purple indicates a higher one.

Supplementary file5 (DOCX 13 kb)

Supplementary file6 (XLSX 10210 kb)

Supplementary file7 (XLSX 467 kb)

Supplementary file8 (XLSX 94 kb)

Supplementary file9 (DOCX 13 kb)

Supplementary file10 (XLSX 11 kb)

Supplementary file11 (DOCX 14 kb)

Supplementary file12 (DOCX 13 kb)

Supplementary file13 (XLSX 17 kb)

Supplementary file14 (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, L., Su, X., Liu, X. et al. Construction of a high-density genetic linkage map and identification of gene controlling resistance to cucumber mosaic virus in Luffa cylindrica (L.) Roem. based on specific length amplified fragment sequencing. Mol Biol Rep 47, 5831–5841 (2020). https://doi.org/10.1007/s11033-020-05652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05652-8

Keywords

Navigation