Skip to main content

Advertisement

Log in

Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human malignancies with a dismal prognosis. During PDAC progression, the immune response is affected as cancer cells evade detection and elimination. Recently, there have been advances in the treatment of PDAC using immunotherapy, although a lot more work is yet to be done. In this review, we discuss these advances, challenges and potentials. We focus on existing and potential immune targets for PDAC, drugs used to target them, and some clinical trials conducted so far with them. Finally, novel targets in the tumour microenvironment such as stromal cells and other potential future areas to explore including bacterial therapy and the use of neoantigens in immunotherapy are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. American Cancer Society (2019) Cancer facts & figures 2019. American Cancer Society, Atlanta

    Google Scholar 

  3. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J et al (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9:454–467. https://doi.org/10.1038/nrgastro.2012.115

    Article  CAS  PubMed  Google Scholar 

  5. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J et al (2013) Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 133:98–107. https://doi.org/10.1002/ijc.27990

    Article  CAS  PubMed  Google Scholar 

  6. Neesse A, Algül H, Tuveson DA, Gress TM (2015) Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–1484. https://doi.org/10.1136/gutjnl-2015-309304

    Article  CAS  PubMed  Google Scholar 

  7. Ikenaga N, Ohuchida K, Mizumoto K, Cui L, Kayashima T, Morimatsu K et al (2010) CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology 139(1041–51):1051.e1–8. https://doi.org/10.1053/j.gastro.2010.05.084

    Article  CAS  Google Scholar 

  8. Raj D, Yang M-H, Rodgers D, Hampton EN, Begum J, Mustafa A et al (2019) Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut 68:1052–1064. https://doi.org/10.1136/gutjnl-2018-316595

    Article  CAS  PubMed  Google Scholar 

  9. Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18:e731–e741. https://doi.org/10.1016/S1470-2045(17)30607-1

    Article  PubMed  Google Scholar 

  10. Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F et al (2018) The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation 15:290. https://doi.org/10.1186/s12974-018-1330-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butte MJ, Keir ME, Phamduy TB, Freeman GJ, Sharpe AH (2007) PD-L1 interacts specifically with B7–1 to inhibit T cell proliferation. Immunity 27:111–122. https://doi.org/10.1016/j.immuni.2007.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Z, Fourcade J, Pagliano O, Chauvin J-M, Sander C, Kirkwood JM et al (2015) IL-10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Res 75:1635–1644. https://doi.org/10.1158/0008-5472.CAN-14-3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geng L, Huang D, Liu J, Qian Y, Deng J, Li D et al (2008) B7–H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 134:1021–1027. https://doi.org/10.1007/s00432-008-0364-8

    Article  CAS  PubMed  Google Scholar 

  14. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clinical Significance and Therapeutic Potential of the Programmed Death-1 Ligand/Programmed Death-1 Pathway in Human Pancreatic Cancer. Clin Cancer Res 13:2151–2157. https://doi.org/10.1158/1078-0432.CCR-06-2746

    Article  CAS  PubMed  Google Scholar 

  15. Song X, Liu J, Lu Y, Jin H, Huang D (2014) Overexpression of B7–H1 correlates with malignant cell proliferation in pancreatic cancer. Oncol Rep 31:1191–1198. https://doi.org/10.3892/or.2013.2955

    Article  CAS  PubMed  Google Scholar 

  16. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P et al (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng X, Zhao G, Zhao Y (2018) Combination immunotherapy approaches for pancreatic cancer treatment. Can J Gastroenterol Hepatol. https://doi.org/10.1155/2018/6240467

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66:1609–1617. https://doi.org/10.1007/s00262-017-2053-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736. https://doi.org/10.1126/science.271.5256.1734

    Article  CAS  PubMed  Google Scholar 

  20. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res 17:6958–6962. https://doi.org/10.1158/1078-0432.CCR-11-1595

    Article  CAS  Google Scholar 

  21. Royal R, Levy C, Turner K, Mathur A, Hughes M, Kammula U et al (2010) Phase 2 trial of single agent ipilimumab (Anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833. https://doi.org/10.1097/CJI.0b013e3181eec14c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S et al (1997) Evaluation of Ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother Hagerstown Md 2013(36):382–389. https://doi.org/10.1097/CJI.0b013e31829fb7a2

    Article  CAS  Google Scholar 

  23. Mercier IL, Chen W, Lines JL, Day M, Li J, Sergent P et al (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74:1933–1944. https://doi.org/10.1158/0008-5472.CAN-13-1506

    Article  CAS  PubMed  Google Scholar 

  24. Flies DB, Wang S, Xu H, Chen L (1950) A monoclonal antibody specific for the programmed death-1 homolog prevents graft versus host disease in mouse models. J Immunol Baltim Md 2011(187):1537–1541. https://doi.org/10.4049/jimmunol.1100660

    Article  CAS  Google Scholar 

  25. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y et al (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208:577–592. https://doi.org/10.1084/jem.20100619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lines JL, Sempere LF, Wang L, Pantazi E, Mak J, O’Connell S et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74:1924–1932. https://doi.org/10.1158/0008-5472.CAN-13-1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS et al (2019) Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci 116:1692–1697. https://doi.org/10.1073/pnas.1811067116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee JJ, Powderly JD, Patel MR, Brody J, Hamilton EP, Infante JR et al (2017) Phase trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and VISTA, in patients (pts) with advanced solid tumor or lymphomas. J Clin Oncol 35:TPS3099. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS3099

    Article  Google Scholar 

  29. Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y et al (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9:176–189. https://doi.org/10.18632/genesandcancer.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Workman CJ, Dugger KJ, Vignali DAA (1950) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol Baltim Md 2002(169):5392–5395. https://doi.org/10.4049/jimmunol.169.10.5392

    Article  Google Scholar 

  31. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004. https://doi.org/10.1016/j.immuni.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brignone C, Grygar C, Marcu M, Schäkel K, Triebel F (2007) A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol 179:4202–4211. https://doi.org/10.4049/jimmunol.179.6.4202

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen LT, Ohashi PS (2015) Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat Rev Immunol 15:45–56. https://doi.org/10.1038/nri3790

    Article  CAS  PubMed  Google Scholar 

  34. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216. https://doi.org/10.1016/j.coi.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D et al (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med 207:505–520. https://doi.org/10.1084/jem.20090397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das M, Zhu C, Kuchroo VK (2017) Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276:97–111. https://doi.org/10.1111/imr.12520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J et al (2017) TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Int J Mol Sci 18:645. https://doi.org/10.3390/ijms18030645

    Article  CAS  PubMed Central  Google Scholar 

  38. Murtaza A, Laken H, Correia JDS, McNeeley P, Altobell L, Zhang J et al (2016) Discovery of TSR-022, a novel, potent anti-human TIM-3 therapeutic antibody. Eur J Cancer 69:S102. https://doi.org/10.1016/S0959-8049(16)32903-3

    Article  Google Scholar 

  39. Demydenko D, Berest I (2009) Expression of galectin-1 in malignant tumors. Exp Oncol 31(2):74–79

    CAS  PubMed  Google Scholar 

  40. Croci DO, Cerliani JP, Dalotto-Moreno T, Méndez-Huergo SP, Mascanfroni ID, Dergan-Dylon S et al (2014) Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–758. https://doi.org/10.1016/j.cell.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  41. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ et al (2012) Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma. J Exp Med 209:1985–2000. https://doi.org/10.1084/jem.20111665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cedeno-Laurent F, Watanabe R, Teague JE, Kupper TS, Clark RA, Dimitroff CJ (2012) Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood 119:3534–3538. https://doi.org/10.1182/blood-2011-12-396457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733

    Article  CAS  PubMed  Google Scholar 

  44. Rabinovich GA, Conejo-García JR (2016) Shaping the immune landscape in cancer by galectin-driven regulatory pathways. J Mol Biol 428:3266–3281. https://doi.org/10.1016/j.jmb.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  45. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y-F, Feng F-L, Zhao X-H, Ye Z-X, Zeng H-P, Li Z et al (2014) Combined detection tumor markers for diagnosis and prognosis of gallbladder cancer. World J Gastroenterol WJG 20:4085–4092. https://doi.org/10.3748/wjg.v20.i14.4085

    Article  CAS  PubMed  Google Scholar 

  47. Molina R, Barak V, van Dalen A, Duffy MJ, Einarsson R, Gion M et al (2005) Tumor markers in breast cancer–European group on tumor markers recommendations. Tumor Biol 26:281–293. https://doi.org/10.1159/000089260

    Article  Google Scholar 

  48. Grunnet M, Sorensen JB (2012) Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer Amst Neth 76:138–143. https://doi.org/10.1016/j.lungcan.2011.11.012

    Article  CAS  Google Scholar 

  49. Lee KJ, Yi SW, Chung MJ, Park SW, Song SY, Chung JB et al (2013) Serum CA 19–9 and CEA levels as a prognostic factor in pancreatic adenocarcinoma. Yonsei Med J 54:643–649. https://doi.org/10.3349/ymj.2013.54.3.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gansauge F, Gansauge S, Parker N, Beger MI, Poch B, Link KH et al (1996) CAM 17.1--a new diagnostic marker in pancreatic cancer. Br J Cancer 74:1997–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blumenthal RD, Hansen HJ, Goldenberg DM (2008) In vitro and in vivo anticancer efficacy of unconjugated humanised anti-CEA monoclonal antibodies. Br J Cancer 99:837–838. https://doi.org/10.1038/sj.bjc.6604548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241. https://doi.org/10.1042/CS20040370

    Article  CAS  Google Scholar 

  53. Guidolin D, Crivellato E, Ribatti D (2011) The, “self-similarity logic” applied to the development of the vascular system. Dev Biol 351:156–162. https://doi.org/10.1016/j.ydbio.2010.12.045

    Article  CAS  PubMed  Google Scholar 

  54. Lee SH, Jeong D, Han Y-S, Baek MJ (2015) Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res 89:1–8. https://doi.org/10.4174/astr.2015.89.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563. https://doi.org/10.1016/j.cardiores.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  56. O’Reilly EM, Oh D-Y, Dhani N, Renouf DJ, Lee MA, Sun W et al (2019) Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1588

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Worni M (2020) Irreversible electroporation (IRE) followed by nivolumab in patients with metastatic pancreatic cancer: a multicenter single-arm phase II trial. https://www.clinicaltrials.gov. Accessed 20 Mar 2020

  59. Khleif SN (2019) A pilot study to test the feasibility of the combination of gemcitabine and anti-PD1 monoclonal antibody (CT-011) in the treatment of resected pancreatic cancer. https://www.clinicaltrials.gov. Accessed 20 Mar 2020

  60. Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A et al (2019) Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase Ib study. Oncologist. https://doi.org/10.1634/theoncologist.2019-0473

    Article  PubMed  PubMed Central  Google Scholar 

  61. Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalà C et al (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 25:1750–1755. https://doi.org/10.1093/annonc/mdu205

    Article  CAS  PubMed  Google Scholar 

  62. Oncoethix GmbH (2012) A phase I, first-in-man study of OTX008 given subcutaneously as a single agent to patients with advanced solid tumors. https://www.clinicaltrials.gov. Accessed 20 Mar 2020

  63. Wang-Gillam A, Plambeck-Suess S, Goedegebuure P, Simon PO, Mitchem JB, Hornick JR et al (2013) A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Invest New Drugs 31:707–713. https://doi.org/10.1007/s10637-012-9866-y

    Article  CAS  PubMed  Google Scholar 

  64. GlaxoSmithKline (2020) A phase 1 dose escalation and cohort expansion study of TSR-022, an anti-TIM-3 monoclonal antibody, in patients with advanced solid tumors (AMBER). https://www.clinicaltrials.gov. Accessed 20 Mar 2020

  65. Reni M, Cereda S, Milella M, Novarino A, Passardi A, Mambrini A et al (2013) Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: a phase II randomised trial. Eur J Cancer 49:3609–3615. https://doi.org/10.1016/j.ejca.2013.06.041

    Article  CAS  PubMed  Google Scholar 

  66. Bergmann L, Maute L, Heil G, Rüssel J, Weidmann E, Köberle D et al (2015) A prospective randomised phase-II trial with gemcitabine versus gemcitabine plus sunitinib in advanced pancreatic cancer: a study of the CESAR Central European Society for Anticancer Drug Research–EWIV. Eur J Cancer 51:27–36. https://doi.org/10.1016/j.ejca.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  67. Wolpin BM, Hezel AF, Ryan DP, Abrams TA, Meyerhardt JA, Blaszkowsky LS et al (2008) Phase II study of RAD001 in previously treated patients with metastatic pancreatic cancer. J Clin Oncol 26:4614–4614. https://doi.org/10.1200/jco.2008.26.15_suppl.4614

    Article  Google Scholar 

  68. Wegener W (2005) A phase I/II study of radioimmunotherapy with 90Y-humanized MN-14 IgG administered as a single dose to patients with refractory advanced/metastatic pancreatic carcinoma. https://www.clinicaltrials.gov. Accessed 20 Mar 2020

  69. Govindan SV, Cardillo TM, Moon S-J, Hansen HJ, Goldenberg DM (2009) CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res Off J Am Assoc Cancer Res 15:6052–6061. https://doi.org/10.1158/1078-0432.CCR-09-0586

    Article  CAS  Google Scholar 

  70. Torphy RJ, Zhu Y, Schulick RD (2018) Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann Gastroenterol Surg 2:274–281. https://doi.org/10.1002/ags3.12176

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B et al (2008) Allogeneic GM-CSF secreting tumor immunotherapy (GVAX®) alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility and immune activation. Clin Cancer Res Off J Am Assoc Cancer Res 14:1455–1463. https://doi.org/10.1158/1078-0432.CCR-07-0371

    Article  CAS  Google Scholar 

  73. Biocom A (2020) Targovax reports 100% one-year survival in pancreatic cancer trial 2019. https://european-biotechnology.com/up-to-date/latest-news/news/targovax-reports-100-one-year-survival-in-pancreatic-cancer-trial.html, Accessed 1 Feb 2020

  74. Bailey P, Chang DK, Forget M-A, Lucas FAS, Alvarez HA, Haymaker C et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 6:35848. https://doi.org/10.1038/srep35848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC (2016) Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res 4:204–214. https://doi.org/10.1158/2326-6066.CIR-15-0188

    Article  CAS  PubMed  Google Scholar 

  76. Jin J, Teng C, Li T (2018) Combination therapy versus gemcitabine monotherapy in the treatment of elderly pancreatic cancer: a meta-analysis of randomized controlled trials. Drug Des Devel Ther 12:475–480. https://doi.org/10.2147/DDDT.S156766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B et al (2017) Combination therapy in combating cancer. Oncotarget 8:38022. https://doi.org/10.18632/oncotarget.16723

    Article  PubMed Central  Google Scholar 

  78. Tsujimoto A, Sudo K, Nakamura K, Kita E, Hara R, Takayama W et al (2019) Gemcitabine plus nab-paclitaxel for locally advanced or borderline resectable pancreatic cancer. Sci Rep 9:16187. https://doi.org/10.1038/s41598-019-52486-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med 19:1410–1422. https://doi.org/10.1038/nm.3389

    Article  CAS  PubMed  Google Scholar 

  80. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I (2019) Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 3:130–137. https://doi.org/10.1002/ags3.12225

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I et al (2013) Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci 110:17945–17950. https://doi.org/10.1073/pnas.1316796110

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62:112–120. https://doi.org/10.1136/gutjnl-2012-302529

    Article  CAS  PubMed  Google Scholar 

  83. Wilmink JW (2020) Phase I/II study of LDE225 with gemcitabine and nab-paclitaxel in patients with pancreatic cancer. https://www.clinicaltrials.gov. https://www.centerwatch.com/clinical-trials/listings/69749/pancreatic-cancer-phase-iii-study-lde225/NCT02358161. Accessed 26 June 2020

  84. Palmer DH, Valle JW, Ma YT, Faluyi O, Neoptolemos JP, Jensen Gjertsen T et al (2020) TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): a single-arm, phase 1/2 trial. Br J Cancer 122:971–977. https://doi.org/10.1038/s41416-020-0752-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J et al (2011) A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann Surg 253:328–335. https://doi.org/10.1097/SLA.0b013e3181fd271c

    Article  PubMed  Google Scholar 

  86. Tran E, Robbins PF, Lu Y-C, Prickett TD, Gartner JJ, Jia L et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375:2255–2262. https://doi.org/10.1056/NEJMoa1609279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varadhachary G (2019) iExosomes in treating participants with metastatic pancreas cancer with KrasG12D mutation. https://www.clinicaltrials.gov. Accessed 2 July 2020

  88. Hidalgo M (2013) Assessment of stromal response to nab-paclitaxel in combination with gemcitabine in pancreatic cancer. https://www.clinicaltrials.gov. Accessed 2 July 2020

  89. Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP, Sigal DS et al (2018) HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clin Oncol Off J Am Soc Clin Oncol 36:359–366. https://doi.org/10.1200/JCO.2017.74.9564

    Article  CAS  Google Scholar 

  90. Babbar A (2015) Streptococcal Superantigens. In: Babbar A (ed) Streptococcal Superantigens. Springer International Publishing, Cham, pp 1–41

    Chapter  Google Scholar 

  91. Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W et al (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178(795–806):e12. https://doi.org/10.1016/j.cell.2019.07.008

    Article  CAS  Google Scholar 

  92. Elahian F, Moghimi B, Dinmohammadi F, Ghamghami M, Hamidi M, Mirzaei SA (2013) The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA Cell Biol 32:90–97. https://doi.org/10.1089/dna.2012.1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee C-H, Wu C-L, Shiau A-L (2008) Toll-like receptor 4 mediates an antitumor host response induced by salmonella choleraesuis. Clin Cancer Res 14:1905–1912. https://doi.org/10.1158/1078-0432.CCR-07-2050

    Article  CAS  PubMed  Google Scholar 

  94. Chang W-W, Lee C-H (2014) Salmonella as an innovative therapeutic antitumor agent. Int J Mol Sci 15:14546–14554. https://doi.org/10.3390/ijms150814546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murakami T, Hiroshima Y, Miyake K, Kiyuna T, Endo I, Zhao M et al (2019) Efficacy of tumor-targeting Salmonella typhimurium A1-R against malignancies in patient-derived orthotopic xenograft (PDOX) murine models. Cells 8:599. https://doi.org/10.3390/cells8060599

    Article  CAS  PubMed Central  Google Scholar 

  96. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MHG, Fleming JB et al (2014) Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX). J Cell Biochem 115:1254–1261. https://doi.org/10.1002/jcb.24769

    Article  CAS  PubMed  Google Scholar 

  97. Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794. https://doi.org/10.1038/nrc2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The review was supported by the South African Medical Research Council grant awarded to Wits Common Epithelial Cancer Research group. Geoffrey Candy is funded by the Cancer Association of South Africa. Miss Zanele Nsingwane thanks the National Research Foundation for a bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zanele Nsingwane.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

This review required no ethics approval.

Informed Consent

This study is a review of published articles, thus did not involve human/animal informed consent or ethical clearance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsingwane, Z., Candy, G., Devar, J. et al. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects. Mol Biol Rep 47, 6269–6280 (2020). https://doi.org/10.1007/s11033-020-05648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05648-4

Keywords

Navigation