Skip to main content

Advertisement

Log in

Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High expression of heat shock proteins (Hsp) in breast cancer has been closely associated with tumor cell proliferation and thus a poor clinical outcome. Quercetin, a good Hsp inhibitor as a dietary flavonoid, possesses anticarcinogenic properties. Although there are many studies on the effects of quercetin on Hsp levels in human breast cancer cells, research on elucidation of its molecular mechanism continues. Herein, we aimed to investigate the effect of quercetin on Hsp levels and whether quercetin is a suitable therapeutic for two breast cancer cell lines (MCF-7 and MDA-MB-231) representing breast tumors which differed in hormone receptor, aggressiveness and treatment responses. To examine the response to high and low doses of quercetin, the cells were treated with three doses of quercetin (10, 25 and 100 μM) determined by MTT. The effects of quercetin on Hsp levels, apoptosis and DNA damage were examined by western blot analysis, caspase activity assay, comet assay and microscopy in human breast cancer cells. Compared to MDA-MB231 cells, MCF-7 cells were more affected by quercetin treatments. Quercetin effectively suppressed the expression of Hsp27, Hsp70 and Hsp90. While quercetin did not induce DNA damage, it triggered apoptosis at high levels. Although an increase in NF-κB levels is observed in the cells exposed to quercetin, the net result is the anticancer effect in case of Hsp depletion and apoptosis induction. Taken together our findings suggested that quercetin can be an effective therapeutic agent for breast cancer therapy regardless of the presence or absence of hormone receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EMS:

Ethyl methanesulfonate

ER:

Estrogen receptor

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HER2:

Human epidermal growth factor receptor 2

HSF:

Heat shock factor

Hsp:

Heat shock protein

IC50 :

The half-maximal inhibitory concentration

NF-κB:

Nuclear factor kappa-B

PARP:

Poly (ADP-ribose) polymerase

PR:

Progesterone receptor

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. ACS (2019) Chemotherapy for Breast Cancer. https://www.cancer.org/cancer/breastcancer/treatment/chemotherapy-for-breast-cancer. Accessed 10 Aug 2019

  3. Martin EA, Brown K, Gaskell M, Al-Azzawi F, Garner RC, Boocock DJ, Mattock E, Pring DW, Dingley K, Turteltaub KW, Smith LL, White IN (2003) Tamoxifen DNA damage detected in human endometrium using accelerator mass spectrometry. Cancer Res 63:8461–8465

    CAS  PubMed  Google Scholar 

  4. Cuzick J, Sestak I, Forbes JF, Dowsett M, Knox J, Cawthorn S, Saunders C, Roche N, Mansel RE, von Minckwitz G, Bonanni B, Palva T, Howell A, IBIS-II investigators (2014) Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383:1041–1048. https://doi.org/10.1016/S0140-6736(13)62292-8

    Article  CAS  PubMed  Google Scholar 

  5. Vargas A, Burd R (2010) Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutr Rev 68:418–428. https://doi.org/10.1111/j.1753-4887.2010.00301.x

    Article  PubMed  Google Scholar 

  6. Önay Uçar E, Şengelen A, Mertoğlu E, Pekmez M, Arda N (2018) Suppression of HSP70 expression by quercetin and its therapeutic potential against cancer. In: Asea A, Kaur P (eds) HSP70 in human diseases and disorders, heat shock proteins. Springer, Cham, pp 361–379

    Chapter  Google Scholar 

  7. Choi EJ, Bae SM, Ahn WS (2008) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31(10):1281–1285. https://doi.org/10.1007/s12272-001-2107-0

    Article  CAS  PubMed  Google Scholar 

  8. Murakami A, Ashida H, Tera J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325. https://doi.org/10.1016/j.canlet.2008.03.046

    Article  CAS  PubMed  Google Scholar 

  9. Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, Lin JP, Tang NY, Chung JG, Chou MJ, Teng YH, Chen DR (2010) Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res 33(8):1181–1191. https://doi.org/10.1007/s12272-010-0808-y

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Stoke J, Singh UP, Gunn KS, Acharya A, Manne U, Mishra M (2016) Targeting Hsp70: a possible therapy for cancer. Cancer Lett 374:156–166. https://doi.org/10.1016/j.canlet.2016.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim LS, Kim JH (2011) Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer 14:167–174. https://doi.org/10.4048/jbc.2011.14.3.167

    Article  PubMed  PubMed Central  Google Scholar 

  12. Şengelen A, Önay-Uçar E (2018) Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 23:885–896. https://doi.org/10.1007/s12192-018-0896-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Önay-Uçar E, Şengelen A (2019) Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones 24:763–775. https://doi.org/10.1007/s12192-019-01004-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matos CP, Adiguzel Z, Yildizhan Y, Cevatemre B, Onder TB, Cevik O, Nunes P, Ferreira LP, Carvalho MD, Campos DL, Pavan FR, Pessoa JC, Garcia MH, Tomaz AI, Correia I, Acilan C (2019) May iron(III) complexes containing phenanthroline derivatives as ligands be prospective anticancer agents? Eur J Med Chem 176:492–512. https://doi.org/10.1016/j.ejmech.2019.04.070

    Article  CAS  PubMed  Google Scholar 

  15. Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M, Ikejima T (2007) P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 28:1057–1066. https://doi.org/10.1111/j.1745-7254.2007.00588.x

    Article  CAS  PubMed  Google Scholar 

  16. Dayem AA, Choi HY, Yang G-M, Kim K, Saha SK, Cho S-G (2016) The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients 8(9):581. https://doi.org/10.3390/nu8090581

    Article  CAS  Google Scholar 

  17. Basu P, Maier C (2018) Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother 107:1648–1666. https://doi.org/10.1016/j.biopha.2018.08.100

    Article  CAS  PubMed  Google Scholar 

  18. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215. https://doi.org/10.1186/bcr2889

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang W, Cui M, Lee J, Gong W, Wang S, Fu J, Wu G, Yan K (2016) Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. Chin J Cancer Res 28:19–28. https://doi.org/10.3978/j.issn.1000-9604.2016.02.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SA (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239:851–856. https://doi.org/10.1006/bbrc.1997.7572

    Article  CAS  PubMed  Google Scholar 

  21. Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A (2016) Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients 8(9):529. https://doi.org/10.3390/nu8090529

    Article  CAS  PubMed Central  Google Scholar 

  22. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases - an update. Comp Biochem Physiol B 151:10–27. https://doi.org/10.1016/j.cbpb.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  23. Wang KKW (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26. https://doi.org/10.1016/S0166-2236(99)01479-4

    Article  PubMed  Google Scholar 

  24. D’Amours D, Sallmann FR, Dixit VM, Poirier GG (2001) Gain-offunction of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 114:3771–3778

    PubMed  Google Scholar 

  25. Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468. https://doi.org/10.1146/annurev-biophys-083012-130338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang CH, Chou PC, Chung FT, Lin HC, Huang KH, Kuo HP (2017) Heat shock protein70 is implicated in modulating NF-κB activation in alveolar macrophages of patients with active pulmonary tuberculosis. Sci Rep 7:1214. https://doi.org/10.1038/s41598-017-01405-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk ON, Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young ZT, Rauch JN, Gestwicki JE, Takayama S, Sherman MY (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740. https://doi.org/10.1158/0008-5472.CAN-14-0747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kang KH, Lee KH, Kim MY, Choi KH (2001) Caspase-3-mediated cleavage of the NF-kappa B subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J Biol Chem 276:24638–24644. https://doi.org/10.1074/jbc.M101291200

    Article  CAS  PubMed  Google Scholar 

  30. Coiras M, Lopez-Huertas MR, Mateos E, Alcami J (2008) Caspase-3-mediated cleavage of p65/RelA results in a carboxy-terminal fragment that inhibits IkappaBalpha and enhances HIV-1 replication in human T lymphocytes. Retrovirology 5:109. https://doi.org/10.1186/1742-4690-5-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castri P, Lee Y, Ponzio T, Maric D, Spatz M, Bembry J, Hallenbeck J (2014) Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling. Biochim Biophys Acta 1843:640–651. https://doi.org/10.1016/j.bbamcr.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ (2009) Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem 106:73–82. https://doi.org/10.1002/jcb.21977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049. https://doi.org/10.1038/srep24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116. https://doi.org/10.1016/S0891-5849(98)00167-1

    Article  CAS  PubMed  Google Scholar 

  35. Du G, Lin H, Wang M, Zhang S, Wu X, Lu L, Ji L, Yu L (2010) Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother Pharmacol 65:277–287. https://doi.org/10.1007/s00280-009-1032-7

    Article  CAS  PubMed  Google Scholar 

  36. Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68:1161–1172. https://doi.org/10.1007/s00280-011-1596-x

    Article  CAS  PubMed  Google Scholar 

  37. Choucroun P, Gillet D, Dorange G, Sawicki B, Dewitte JD (2001) Comet assay and early apoptosis. Mutat Res 478:89–96. https://doi.org/10.1016/S0027-5107(01)00123-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant Number: 1919B011502439), Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Önay Uçar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kıyga, E., Şengelen, A., Adıgüzel, Z. et al. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol Biol Rep 47, 4957–4967 (2020). https://doi.org/10.1007/s11033-020-05641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05641-x

Keywords

Navigation