Skip to main content

Advertisement

Log in

Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent studies have showed that the long non-coding RNAs (lncRNAs) expression is dysregulated in different neurodegenerative disorders like Alzheimer’s disease (AD). In the present study, the effects of memantine on the level of Bace1-as and Bace1 genes’ expression in streptozotocin (STZ)-induced Alzheimer’s and memantine treated rats were investigated. The male Wistar rats were randomly divided into four groups: 1-Normal control, 2-Sham-operated control, 3- Alzheimer’scontrol rats (ICV-STZ), 4-Experimental group rats treated by memantine in a dose of 30 mg/kg/day for 28 days in ICV-STZ rats. The expression of Bace1-as and Bace1 genes was measured by quantitative-PCR in the brain and blood tissues. ELISA was used to analyze Bace1 and proteins. Expression of Bace1-as was significantly increased in the brain and blood tissues of the experimental group (p = 0.032 and p = 0.034, respectively). The expression of Bace1 gene showed no significant changes in the brain. Furthermore, the ELISA analysis revealed that Bace1 protein was significantly increased in the plasma of the Alzheimer’s control group (p = 0.000) and in the brain tissue of the experimental group (p = 0.000). Additionally, levels had no significant changes between all groups studied. The Bace1 protein may be used as a prognostic biomarker in plasma, or before using memantine as a treatment. Furthermore, Bace1-as gene expression may play a role in monitoring the progression of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takizawa C, Thompson PL, van Walsem A, Faure C, Maier WC (2015) Epidemiological and economic burden of Alzheimer's disease: a systematic literature review of data across Europe and the United States of America. J Alzheimer's Dis 43(4):1271–1284

    Google Scholar 

  2. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K (2016) Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria. Alzheimer's Dementia 12(3):292–323

    PubMed  PubMed Central  Google Scholar 

  3. Hamilton RL (2000) Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol 10(3):378–384

    CAS  PubMed  Google Scholar 

  4. Pei J-J, Khatoon S, An W-L, Nordlinder M, Tanaka T, Braak H, Tsujio I, Takeda M, Alafuzoff I, Winblad B (2003) Role of protein kinase B in Alzheimer's neurofibrillary pathology. Acta Neuropathol 105(4):381–392

    CAS  PubMed  Google Scholar 

  5. Das B, Yan R (2017) Role of BACE1 in Alzheimer’s synaptic function. Transl Neurodegeneration 6(1):23

    CAS  Google Scholar 

  6. Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283(44):29621–29625

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roßner S, Sastre M, Bourne K, Lichtenthaler SF (2006) Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer's disease. Prog Neurobiol 79(2):95–111

    PubMed  Google Scholar 

  8. Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K (2017) Alzheimer's disease drug development pipeline: 2017. Alzheimer's Dementia 3(3):367–384

    PubMed  Google Scholar 

  9. Lipton SA (2005) The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2(2):155–165

    CAS  PubMed  Google Scholar 

  10. Lee SH, Kim SH, Noh YH, Choi BM, Noh GJ, Park WD, Kim EJ, Cho IH, Bae CS (2016) Pharmacokinetics of memantine after a single and multiple dose of oral and patch administration in rats. Basic Clin Pharmacol Toxicol 118(2):122–127

    CAS  PubMed  Google Scholar 

  11. Parsons C, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38(6):735–767

    CAS  PubMed  Google Scholar 

  12. Alley GM, Bailey JA, Chen D, Ray B, Puli LK, Tanila H, Banerjee PK, Lahiri DK (2010) Memantine lowers amyloid-β peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res 88(1):143–154

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Danysz W, Parsons CG (2012) Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol 167(2):324–352

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL (2015) Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9:464

    PubMed  PubMed Central  Google Scholar 

  15. Ito K, Tatebe T, Suzuki K, Hirayama T, Hayakawa M, Kubo H, Tomita T, Makino M (2017) Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking. Eur J Pharmacol 798:16–25

    CAS  PubMed  Google Scholar 

  16. Dominguez E, Chin T-Y, Chen C-P, Wu T-Y (2011) Management of moderate to severe Alzheimer’s disease: focus on memantine. Taiwanese J Obstetr Gynecol 50(4):415–423

    Google Scholar 

  17. Lahiri D, Chen D, Aelley G, Banerjee P Memantine decreases beta-secretase activity in human neuroblastoma cells. In: The 10th International Conference on Alzheimer’s Disease and Related Disorders, 2006.

  18. Honegger U, Quack G, Wiesmann U (1993) Evidence for lysosomotropism of memantine in cultured human cells: cellular kinetics and effects of memantine on phospholipid content and composition, membrane fluidity and β-adrenergic transmission. Pharmacol Toxicol 73(4):202–208

    CAS  PubMed  Google Scholar 

  19. Folch J, Busquets O, Ettcheto M, Sanchez-Lopez E, Castro-Torres RD, Verdaguer E, Garcia ML, Olloquequi J, Casadesus G, Beas-Zarate C (2018) Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimer's Dis 62(3):1223–1240

    CAS  Google Scholar 

  20. Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6

    PubMed  PubMed Central  Google Scholar 

  21. Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G (2015) Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88(5):861–877

    CAS  PubMed  Google Scholar 

  22. Luo Q, Chen Y (2016) Long noncoding RNAs and Alzheimer’s disease. Clin Interv Aging 11:867

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z (2016) Long non-coding RNAs in Alzheimer's disease. Curr Top Med Chem 16(5):511–519

    CAS  PubMed  Google Scholar 

  25. Kang M-J, Abdelmohsen K, Hutchison ER, Mitchell SJ, Grammatikakis I, Guo R, Noh JH, Martindale JL, Yang X, Lee EK (2014) HuD regulates coding and noncoding RNA to induce APP→ Aβ processing. Cell Rep 7(5):1401–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Huang Y, Chen J, Chi H, Yu Z, Wang J, Chen C (2014) Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep 10(3):1275–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan J, Venkatraman S, Zheng Y, McKeever BM, Dillard LW, Singh SB (2013) Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J Med Chem 56(11):4156–4180

    CAS  PubMed  Google Scholar 

  28. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent GS III, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med 14(7):723

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Coulson DT, Beyer N, Quinn JG, Brockbank S, Hellemans J, Irvine GB, Ravid R, Johnston JA (2010) BACE1 mRNA expression in Alzheimer's disease postmortem brain tissue. J Alzheimer's Dis 22(4):1111–1122

    CAS  Google Scholar 

  30. Deane R, Bell R, Sagare A, Zlokovic B (2009) Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol Disord Drug Targets 8(1):16–30

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Okonkwo OC, Alosco ML, Jerskey BA, Sweet LH, Ott BR, Tremont G, AsDN I (2010) Cerebral atrophy, apolipoprotein E ɛ4, and rate of decline in everyday function among patients with amnestic mild cognitive impairment. Alzheimer's Dement 6(5):404–411

    CAS  Google Scholar 

  32. Mulder SD, van der Flier WM, Verheijen JH, Mulder C, Scheltens P, Blankenstein MA, Hack CE, Veerhuis R (2010) BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J Alzheimer's Dis 20(1):253–260

    CAS  Google Scholar 

  33. Feng L, Liao Y-T, He J-C, Xie C-L, Chen S-Y, Fan H-H, Su Z-P, Wang Z (2018) Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol 18(1):4

    PubMed  PubMed Central  Google Scholar 

  34. Fotuhi SN, Khalaj-Kondori M, Feizi MAH, Talebi M (2019) Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Mol Neurosci 69(3):351–359

    CAS  PubMed  Google Scholar 

  35. Cheng X, He P, Lee T, Yao H, Li R, Shen Y (2014) High activities of BACE1 in brains with mild cognitive impairment. Am J Pathol 184(1):141–147

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang L-B, Lindholm K, Yan R, Citron M, Xia W, Yang X-L, Beach T, Sue L, Wong P, Price D (2003) Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9(1):3–4

    CAS  PubMed  Google Scholar 

  37. Ahmed RR, Holler CJ, Webb RL, Li F, Beckett TL, Murphy MP (2010) BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J Neurochem 112(4):1045–1053

    CAS  PubMed  Google Scholar 

  38. Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59(9):1381–1389

    PubMed  Google Scholar 

  39. Zhong Z, Ewers M, Teipel S, Bürger K, Wallin A, Blennow K, He P, McAllister C, Hampel H, Shen Y (2007) Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry 64(6):718–726

    CAS  PubMed  Google Scholar 

  40. Pxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Har-court Brace Jovanovich, San Diego

    Google Scholar 

  41. Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752

    CAS  PubMed  Google Scholar 

  42. Khalili M, Kiasalari Z, Rahmati B, Narenjkar J (2010) Behavioral and histological analysis of Crocus sativus effect in intracerebroventricular streptozotocin model of Alzheimer disease in rats. Iranian J Pathol 5(1):27–33

    Google Scholar 

  43. Jayant S, Sharma BM, Bansal R, Sharma B (2016) Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease. Pharmacol Biochem Behav 140:39–50

    CAS  PubMed  Google Scholar 

  44. Ahmed ME, Khan MM, Javed H, Vaibhav K, Khan A, Tabassum R, Ashafaq M, Islam F, Safhi MM, Islam F (2013) Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem Int 62(4):492–501

    Google Scholar 

  45. Wang D, Wang C, Liu L, Li S (2018) Protective effects of evodiamine in experimental paradigm of Alzheimer’s disease. Cogn Neurodyn 12(3):303–313

    PubMed  PubMed Central  Google Scholar 

  46. Suenaga T, Hirano A, Llena J, Yen S-H, Dickson DW (1990) Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer's disease. Acta Neuropathol 80(3):280–286

    CAS  PubMed  Google Scholar 

  47. Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, Song W (2017) BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer's pathogenesis. J Neurosci 37(29):6915–6925

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ji S, Kuroda Y (2000) Amyloid precursor protein β-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors. Neuropathology 20(4):289–296

    Google Scholar 

  49. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF (2003) Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 101(6):2285–2293

    CAS  PubMed  Google Scholar 

  50. Bush AI, Martins R, Rumble B, Moir R, Fuller S, Milward E, Currie J, Ames D, Weidemann A, Fischer P (1990) The amyloid precursor protein of Alzheimer's disease is released by human platelets. J Biol Chem 265(26):15977–15983

    CAS  PubMed  Google Scholar 

  51. Li Q-X, Berndt M, Bush A, Rumble B, Mackenzie I, Friedhuber A, Beyreuther K, Masters C (1994) Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer's disease in human platelet and brain: surface expression on the activated human platelet. Blood 84(1):133–142

    CAS  PubMed  Google Scholar 

  52. Evin G, Zhu A, Holsinger RD, Masters CL, Li QX (2003) Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J Neurosci Res 74(3):386–392

    CAS  PubMed  Google Scholar 

  53. Chen M, Inestrosa NC, Ross GS, Fernandez HL (1995) Platelets are the primary source of amyloid β-peptide in human blood. Biochem Biophys Res Commun 213(1):96–103

    CAS  PubMed  Google Scholar 

  54. Murayama KS, Kametani F, Araki W (2005) Extracellular release of BACE1 holoproteins from human neuronal cells. Biochem Biophys Res Commun 338(2):800–807

    CAS  PubMed  Google Scholar 

  55. Humpel C (2011) Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol 29(1):26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC (2010) Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560

    CAS  PubMed  Google Scholar 

  57. Wallin Å, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O (2010) CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology 74(19):1531–1537

    CAS  PubMed  Google Scholar 

  58. Cao X, Südhof TC (2004) Dissection of amyloid-β precursor protein-dependent transcriptional transactivation. J Biol Chem 279(23):24601–24611

    CAS  PubMed  Google Scholar 

  59. Hébert SS, Serneels L, Tolia A, Craessaerts K, Derks C, Filippov MA, Müller U, De Strooper B (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep 7(7):739–745

    PubMed  PubMed Central  Google Scholar 

  60. Hostetler KY, Richman DD (1982) Studies on the mechanism of phospholipid storage induced by amantadine and chloroquine in Madin Darby canine kidney cells. Biochem Pharmacol 31(23):3795–3799

    CAS  PubMed  Google Scholar 

  61. Parsons CG, Gilling KE, Jatzke C (2008) Memantine does not show intracellular block of the NMDA receptor channel. Eur J Pharmacol 587(1–3):99–103

    CAS  PubMed  Google Scholar 

  62. Holsinger RD, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor β-secretase in Alzheimer's disease. Ann Neurol 51(6):783–786

    CAS  PubMed  Google Scholar 

  63. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248(4959):1122–1124

    CAS  PubMed  Google Scholar 

  64. Okereke OI, Xia W, Irizarry MC, Sun X, Qiu WQ, Fagan AM, Mehta PD, Hyman BT, Selkoe DJ, Grodstein F (2009) Performance characteristics of plasma amyloid-β 40 and 42 assays. J Alzheimer's Dis 16(2):277–285

    CAS  Google Scholar 

  65. Oh ES, Troncoso JC, Tucker SMF (2008) Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer’s disease. Neuro Mol Med 10(3):195

    CAS  Google Scholar 

  66. Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1(2):226–234

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Noormohammadi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Research involving human participants and/or animals

The Ethics Committee principles, as well as the Guide for the Care and Use of Laboratory Animals by the National Institute of Health (No. 85-23, revised in 1996), were observed in all the experiments. The Ethics Committee also approved this study (IR.IAU.SRB.REC.1397.170). No human sample was used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadfar, P., Noormohammadi, Z., Noroozian, M. et al. Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep 47, 5737–5745 (2020). https://doi.org/10.1007/s11033-020-05629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05629-7

Keywords

Navigation